12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The helicase Pif1 functions in the template switching pathway of DNA damage bypass

      research-article
      , ,
      Nucleic Acids Research
      Oxford University Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Replication of damaged DNA is challenging because lesions in the replication template frequently interfere with an orderly progression of the replisome. In this situation, complete duplication of the genome is ensured by the action of DNA damage bypass pathways effecting either translesion synthesis by specialized, damage-tolerant DNA polymerases or a recombination-like mechanism called template switching (TS). Here we report that budding yeast Pif1, a helicase known to be involved in the resolution of complex DNA structures as well as the maturation of Okazaki fragments during replication, contributes to DNA damage bypass. We show that Pif1 expands regions of single-stranded DNA, so-called daughter-strand gaps, left behind the replication fork as a consequence of replisome re-priming. This function requires interaction with the replication clamp, proliferating cell nuclear antigen, facilitating its recruitment to damage sites, and complements the activity of an exonuclease, Exo1, in the processing of post-replicative daughter-strand gaps in preparation for TS. Our results thus reveal a novel function of a conserved DNA helicase that is known as a key player in genome maintenance.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          PCNA, the maestro of the replication fork.

          Inheritance requires genome duplication, reproduction of chromatin and its epigenetic information, mechanisms to ensure genome integrity, and faithful transmission of the information to progeny. Proliferating cell nuclear antigen (PCNA)-a cofactor of DNA polymerases that encircles DNA-orchestrates several of these functions by recruiting crucial players to the replication fork. Remarkably, many factors that are involved in replication-linked processes interact with a particular face of PCNA and through the same interaction domain, indicating that these interactions do not occur simultaneously during replication. Switching of PCNA partners may be triggered by affinity-driven competition, phosphorylation, proteolysis, and modification of PCNA by ubiquitin and SUMO.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends.

            Formation of single-strand DNA (ssDNA) tails at a double-strand break (DSB) is a key step in homologous recombination and DNA-damage signaling. The enzyme(s) producing ssDNA at DSBs in eukaryotes remain unknown. We monitored 5'-strand resection at inducible DSB ends in yeast and identified proteins required for two stages of resection: initiation and long-range 5'-strand resection. We show that the Mre11-Rad50-Xrs2 complex (MRX) initiates 5' degradation, whereas Sgs1 and Dna2 degrade 5' strands exposing long 3' strands. Deletion of SGS1 or DNA2 reduces resection and DSB repair by single-strand annealing between distant repeats while the remaining long-range resection activity depends on the exonuclease Exo1. In exo1Deltasgs1Delta double mutants, the MRX complex together with Sae2 nuclease generate, in a stepwise manner, only few hundred nucleotides of ssDNA at the break, resulting in inefficient gene conversion and G2/M damage checkpoint arrest. These results provide important insights into the early steps of DSB repair in eukaryotes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase.

              G-quadruplex (G4) DNA structures are extremely stable four-stranded secondary structures held together by noncanonical G-G base pairs. Genome-wide chromatin immunoprecipitation was used to determine the in vivo binding sites of the multifunctional Saccharomyces cerevisiae Pif1 DNA helicase, a potent unwinder of G4 structures in vitro. G4 motifs were a significant subset of the high-confidence Pif1-binding sites. Replication slowed in the vicinity of these motifs, and they were prone to breakage in Pif1-deficient cells, whereas non-G4 Pif1-binding sites did not show this behavior. Introducing many copies of G4 motifs caused slow growth in replication-stressed Pif1-deficient cells, which was relieved by spontaneous mutations that eliminated their ability to form G4 structures, bind Pif1, slow DNA replication, and stimulate DNA breakage. These data suggest that G4 structures form in vivo and that they are resolved by Pif1 to prevent replication fork stalling and DNA breakage. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                19 September 2018
                10 August 2018
                10 August 2018
                : 46
                : 16
                : 8347-8356
                Affiliations
                Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128 Mainz, Germany
                Author notes
                To whom correspondence should be addressed. Tel: +49 6131 39 21490; Fax: +49 6131 39 21499; Email: h.ulrich@ 123456imb-mainz.de . Correspondence may also be addressed to Néstor García-Rodríguez. Tel: +49 6131 39 21494; Fax: +49 6131 39 21499; Email: n.garcia@ 123456imb-mainz.de
                Author information
                http://orcid.org/0000-0003-0431-2223
                Article
                gky648
                10.1093/nar/gky648
                6144865
                30107417
                1e89ae84-3c32-4a01-8132-c21961e77067
                © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 08 August 2018
                : 06 July 2018
                : 18 May 2018
                Page count
                Pages: 10
                Funding
                Funded by: European Research Council 10.13039/501100000781
                Award ID: 323179
                Categories
                Genome Integrity, Repair and Replication

                Genetics
                Genetics

                Comments

                Comment on this article