44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Direct optic nerve sheath (DONS) application of Schwann cells prolongs retinal ganglion cell survival in vivo

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cell-based therapies are increasingly recognized as a potential strategy to treat retinal neurodegenerative disease. Their administration, however, is normally indirect and complex, often with an inability to assess in real time their effects on cell death and their migration/integration into the host retina. In the present study, using a partial optic nerve transection (pONT) rat model, we describe a new method of Schwann cell (SC) delivery (direct application to injured optic nerve sheath, SC/DONS), which was compared with intravitreal SC delivery (SC/IVT). Both SC/DONS and SC/IVT were able to be assessed in vivo using imaging to visualize retinal ganglion cell (RGC) apoptosis and SC retinal integration. RGC death in the pONT model was best fitted to the one-phase exponential decay model. Although both SC/DONS and SC/IVT altered the temporal course of RGC degeneration in pONT, SC/DONS resulted in delayed but long-lasting effects on RGC protection, compared with SC/IVT treatment. In addition, their effects on primary and secondary degeneration, and axonal regeneration, were also investigated, by histology, whole retinal counting, and modelling of RGC loss. SC/DONS was found to significantly reduce RGC apoptosis in vivo and significantly increase RGC survival by targeting secondary rather than primary degeneration. Both SC/DONS and SC/IVT were found to promote RGC axonal regrowth after optic nerve injury, with evidence of GAP-43 expression in RGC somas and axons. SC/DONS may have the potential in the treatment of optic neuropathies, such as glaucoma. We show that SC transplantation can be monitored in real time and that the protective effects of SCs are associated with targeting secondary degeneration, with implications for translating cell-based therapies to the clinic.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma.

          Purpose. Retrograde neurotrophic factor transport blockade has been implicated in the pathophysiology of glaucoma. Stem cell transplantation appears to ameliorate some neurodegenerative conditions in the brain and spinal cord, in part by neurotrophic factor secretion. The present study was conducted to determine whether local or systemic bone marrow-derived mesenchymal stem cell (MSC) transplantation can confer neuroprotection in a rat model of laser-induced ocular hypertensive glaucoma. Methods. MSCs were isolated from the bone marrow of adult wild-type and transgenic rats that ubiquitously express green fluorescent protein. MSCs were transplanted intravitreally 1 week before, or intravenously on the day of, ocular hypertension induction by laser photocoagulation of the trabecular meshwork. Ocular MSC localization and integration were determined by immunohistochemistry. Optic nerve damage was quantified by counting axons within optic nerve cross-sections 4 weeks after laser treatment. Results. After intravitreal transplantation, MSCs survived for at least 5 weeks. Cells were found mainly in the vitreous cavity, though a small proportion of discrete cells migrated into the host retina. Intravitreal MSC transplantation resulted in a statistically significant increase in overall RGC axon survival and a significant decrease in the rate of RGC axon loss normalized to cumulative intraocular pressure exposure. After intravenous transplantation, MSCs did not migrate to the injured eye. Intravenous transplantation had no effect on optic nerve damage. Conclusions. Local, but not systemic, transplantation of MSCs was neuroprotective in a rat glaucoma model. Autologous intravitreal transplantation of MSCs should be investigated further as a potential neuroprotective therapy for glaucoma.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Schwann cells: origins and role in axonal maintenance and regeneration.

            The Schwann cell plays a vital role in maintaining the peripheral nervous system (PNS). Schwann cells are derived from neural crest cells, and come in two types either myelinating or non-myelinating Schwann cells. Both play a pivotal role in the maintenance and regeneration of axons of the neurons in the PNS. The regulation of Schwann cells is mediated a number of different neurotrophic factors which signal to transcription factors such as Krox-20, Oct-6 and Sox-10. Schwann cells are affected in a number of demyelinating disorders, such as Charcot-Marie-Tooth disease and Guillain-Barré Syndrome, infected by Mycobacterium leprae to cause leprosy and are responsible for the tumors seen in patients with neurofibromatosis type 1 and neurofibromatosis type 2. The Schwann cell is under investigation as a therapeutic agent for demyelinating diseases and spinal cord injuries. Further research on Schwann cells will help understand these diseases and perhaps lead to new treatments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A one-hit model of cell death in inherited neuronal degenerations.

              In genetic disorders associated with premature neuronal death, symptoms may not appear for years or decades. This delay in clinical onset is often assumed to reflect the occurrence of age-dependent cumulative damage. For example, it has been suggested that oxidative stress disrupts metabolism in neurological degenerative disorders by the cumulative damage of essential macromolecules. A prediction of the cumulative damage hypothesis is that the probability of cell death will increase over time. Here we show in contrast that the kinetics of neuronal death in 12 models of photoreceptor degeneration, hippocampal neurons undergoing excitotoxic cell death, a mouse model of cerebellar degeneration and Parkinson's and Huntington's diseases are all exponential and better explained by mathematical models in which the risk of cell death remains constant or decreases exponentially with age. These kinetics argue against the cumulative damage hypothesis; instead, the time of death of any neuron is random. Our findings are most simply accommodated by a 'one-hit' biochemical model in which mutation imposes a mutant steady state on the neuron and a single event randomly initiates cell death. This model appears to be common to many forms of neurodegeneration and has implications for therapeutic strategies.
                Bookmark

                Author and article information

                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group
                2041-4889
                October 2014
                16 October 2014
                1 October 2014
                : 5
                : 10
                : e1460
                Affiliations
                [1 ]Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology , London, UK
                [2 ]Western Eye Hospital, Imperial College Healthcare Trust , London, UK
                [3 ]Cell Biology, UCL Institute of Ophthalmology , London, UK
                [4 ]Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology , Wuhan, China
                [5 ]China-Japan Union Hospital, Jilin University , Changchun, China
                [6 ]Cell Interactions and Cancer, Clinical Sciences Centre, Hammersmith Hospital, Imperial College , London, UK
                Author notes
                [* ]Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology , 11-43 Bath Street, London EC1V 9EL, UK. Tel: +44 207 608 6821; Fax: +44 207 608 6938; E-mail: l.guo@ 123456ucl.ac.uk
                Article
                cddis2014399
                10.1038/cddis.2014.399
                4237238
                25321467
                1e641bd3-79b9-4ddd-8322-b453b3e68210
                Copyright © 2014 Macmillan Publishers Limited

                Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution 4.0 International Licence. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons licence, users will need to obtain permission from the licence holder to reproduce the material. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0

                History
                : 23 May 2014
                : 06 August 2014
                : 08 August 2014
                Categories
                Original Article

                Cell biology
                Cell biology

                Comments

                Comment on this article