129
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A High Precision Survey of the Molecular Dynamics of Mammalian Clathrin-Mediated Endocytosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The molecular dynamics of clathrin-mediated endocytosis in living cells has been mapped with an approximately ten-fold improvement in temporal accuracy, yielding new insights into the molecular mechanism.

          Abstract

          Dual colour total internal reflection fluorescence microscopy is a powerful tool for decoding the molecular dynamics of clathrin-mediated endocytosis (CME). Typically, the recruitment of a fluorescent protein–tagged endocytic protein was referenced to the disappearance of spot-like clathrin-coated structure (CCS), but the precision of spot-like CCS disappearance as a marker for canonical CME remained unknown. Here we have used an imaging assay based on total internal reflection fluorescence microscopy to detect scission events with a resolution of ∼2 s. We found that scission events engulfed comparable amounts of transferrin receptor cargo at CCSs of different sizes and CCS did not always disappear following scission. We measured the recruitment dynamics of 34 types of endocytic protein to scission events: Abp1, ACK1, amphiphysin1, APPL1, Arp3, BIN1, CALM, CIP4, clathrin light chain (Clc), cofilin, coronin1B, cortactin, dynamin1/2, endophilin2, Eps15, Eps8, epsin2, FBP17, FCHo1/2, GAK, Hip1R, lifeAct, mu2 subunit of the AP2 complex, myosin1E, myosin6, NECAP, N-WASP, OCRL1, Rab5, SNX9, synaptojanin2β1, and syndapin2. For each protein we aligned ∼1,000 recruitment profiles to their respective scission events and constructed characteristic “recruitment signatures” that were grouped, as for yeast, to reveal the modular organization of mammalian CME. A detailed analysis revealed the unanticipated recruitment dynamics of SNX9, FBP17, and CIP4 and showed that the same set of proteins was recruited, in the same order, to scission events at CCSs of different sizes and lifetimes. Collectively these data reveal the fine-grained temporal structure of CME and suggest a simplified canonical model of mammalian CME in which the same core mechanism of CME, involving actin, operates at CCSs of diverse sizes and lifetimes.

          Author Summary

          The molecular machinery of clathrin-mediated endocytosis concentrates receptors at the cell surface in a patch of membrane that curves into a vesicle, pinches off, and internalizes membrane cargo and a tiny volume of extracellular fluid. We know that dozens of proteins are involved in this process, but precisely when and where they act remains poorly understood. Here we used a fluorescence imaging assay to detect the moment of scission in living cells and used this as a reference point from which to measure the characteristic recruitment signatures of 34 fluorescently tagged endocytic proteins. Pair-wise comparison of these recruitment signatures allowed us to identify seven modules of proteins that were recruited with similar kinetics. For the most part the recruitment signatures were consistent with what was previously known about the proteins' structure and their binding affinities; however, the recruitment signatures for some components (such as some BAR and F-BAR domain proteins) could not have been predicted from existing structural or biochemical data. This study provides a paradigm for mapping molecular dynamics in living cells and provides new insights into the mechanism of clathrin-mediated endocytosis.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          BAR domains as sensors of membrane curvature: the amphiphysin BAR structure.

          The BAR (Bin/amphiphysin/Rvs) domain is the most conserved feature in amphiphysins from yeast to human and is also found in endophilins and nadrins. We solved the structure of the Drosophila amphiphysin BAR domain. It is a crescent-shaped dimer that binds preferentially to highly curved negatively charged membranes. With its N-terminal amphipathic helix and BAR domain (N-BAR), amphiphysin can drive membrane curvature in vitro and in vivo. The structure is similar to that of arfaptin2, which we find also binds and tubulates membranes. From this, we predict that BAR domains are in many protein families, including sorting nexins, centaurins, and oligophrenins. The universal and minimal BAR domain is a dimerization, membrane-binding, and curvature-sensing module.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Improving the photostability of bright monomeric orange and red fluorescent proteins.

            All organic fluorophores undergo irreversible photobleaching during prolonged illumination. Although fluorescent proteins typically bleach at a substantially slower rate than many small-molecule dyes, in many cases the lack of sufficient photostability remains an important limiting factor for experiments requiring large numbers of images of single cells. Screening methods focusing solely on brightness or wavelength are highly effective in optimizing both properties, but the absence of selective pressure for photostability in such screens leads to unpredictable photobleaching behavior in the resulting fluorescent proteins. Here we describe an assay for screening libraries of fluorescent proteins for enhanced photostability. With this assay, we developed highly photostable variants of mOrange (a wavelength-shifted monomeric derivative of DsRed from Discosoma sp.) and TagRFP (a monomeric derivative of eqFP578 from Entacmaea quadricolor) that maintain most of the beneficial qualities of the original proteins and perform as reliably as Aequorea victoria GFP derivatives in fusion constructs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endocytosis by random initiation and stabilization of clathrin-coated pits.

              Clathrin-coated vesicles carry traffic from the plasma membrane to endosomes. We report here the real-time visualization of cargo sorting and endocytosis by clathrin-coated pits in living cells. We have detected the formation of coats by monitoring incorporation of fluorescently tagged clathrin or its adaptor AP-2; we have also followed clathrin-mediated uptake of transferrin and of single LDL or reovirus particles. The intensity of a cargo-loaded clathrin cluster grows steadily during its lifetime, and the time required to complete assembly is proportional to the size of the cargo particle. These results are consistent with a nucleation-growth mechanism and an approximately constant growth rate. There are no strongly preferred nucleation sites. A proportion of the nucleation events are weak and short lived. Cargo incorporation occurs primarily or exclusively in a newly formed coated pit. Our data lead to a model in which coated pits initiate randomly but collapse unless stabilized, perhaps by cargo capture.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                March 2011
                March 2011
                22 March 2011
                : 9
                : 3
                : e1000604
                Affiliations
                [1 ]Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
                [2 ]Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
                [3 ]simpleCNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
                The Scripps Research Institute, United States of America
                Author notes

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: MJT CJM. Performed the experiments: MJT CJM. Analyzed the data: MJT DP CJM. Wrote the paper: MJT DP CJM.

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: MJT CJM. Performed the experiments: MJT CJM. Analyzed the data: MJT DP CJM. Wrote the paper: MJT CJM.

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: MJT CJM. Performed the experiments: MJT CJM. Analyzed the data: MJT DP CJM. Wrote the paper: MJT CJM.

                Article
                10-PLBI-RA-9309R3
                10.1371/journal.pbio.1000604
                3062526
                21445324
                1e57f1b4-ba7b-4603-a38f-40525f0e2a5d
                Taylor et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 8 September 2010
                : 10 February 2011
                Page count
                Pages: 23
                Categories
                Research Article
                Biochemistry/Cell Signaling and Trafficking Structures
                Biophysics/Cell Signaling and Trafficking Structures
                Biophysics/Macromolecular Assemblies and Machines
                Cell Biology/Membranes and Sorting
                Computational Biology/Systems Biology

                Life sciences
                Life sciences

                Comments

                Comment on this article