11
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Detection of coronaviruses in Pteropus & Rousettus species of bats from different States of India

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background & objectives:

          Bats are considered to be the natural reservoir for many viruses, of which some are potential human pathogens. In India, an association of Pteropus medius bats with the Nipah virus was reported in the past. It is suspected that the recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also has its association with bats. To assess the presence of CoVs in bats, we performed identification and characterization of bat CoV (BtCoV) in P. medius and Rousettus species from representative States in India, collected during 2018 and 2019.

          Methods:

          Representative rectal swab (RS) and throat swab specimens of Pteropus and Rousettus spp. bats were screened for CoVs using a pan-CoV reverse transcription-polymerase chain reaction (RT-PCR) targeting the RNA-dependent RNA polymerase ( RdRp) gene. A single-step RT-PCR was performed on the RNA extracted from the bat specimens. Next-generation sequencing (NGS) was performed on a few representative bat specimens that were tested positive. Phylogenetic analysis was carried out on the partial sequences of RdRp gene sequences retrieved from both the bat species and complete viral genomes recovered from Rousettus spp.

          Results:

          Bat samples from the seven States were screened, and the RS specimens of eight Rousettus spp. and 21 Pteropus spp. were found positive for CoV RdRp gene. Among these, by Sanger sequencing, partial RdRp sequences could be retrieved from three Rousettus and eight Pteropus bat specimens. Phylogenetic analysis of the partial RdRp region demonstrated distinct subclustering of the BtCoV sequences retrieved from these Rousettus and Pteropus spp. bats. NGS led to the recovery of four sequences covering approximately 94.3 per cent of the whole genome of the BtCoVs from Rousettus bats. Three BtCoV sequences had 93.69 per cent identity to CoV BtRt-BetaCoV/GX2018. The fourth BtCoV sequence was 96.8 per cent identical to BtCoV HKU9-1.

          Interpretation & conclusions:

          This study was a step towards understanding the CoV circulation in Indian bats. Detection of potentially pathogenic CoVs in Indian bats stresses the need for enhanced screening for novel viruses in them. One Health approach with collaborative activities by the animal health and human health sectors in these surveillance activities shall be of use to public health. This would help in the development of diagnostic assays for novel viruses with outbreak potential and be useful in disease interventions. Proactive surveillance remains crucial for identifying the emerging novel viruses with epidemic potential and measures for risk mitigation.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A pneumonia outbreak associated with a new coronavirus of probable bat origin

          Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats 1–4 . Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans 5–7 . Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Middle East Respiratory Syndrome Coronavirus in Bats, Saudi Arabia

            The source of human infection with Middle East respiratory syndrome coronavirus remains unknown. Molecular investigation indicated that bats in Saudi Arabia are infected with several alphacoronaviruses and betacoronaviruses. Virus from 1 bat showed 100% nucleotide identity to virus from the human index case-patient. Bats might play a role in human infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Human Coronaviruses: A Review of Virus–Host Interactions

              Human coronaviruses (HCoVs) are known respiratory pathogens associated with a range of respiratory outcomes. In the past 14 years, the onset of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) have thrust HCoVs into spotlight of the research community due to their high pathogenicity in humans. The study of HCoV-host interactions has contributed extensively to our understanding of HCoV pathogenesis. In this review, we discuss some of the recent findings of host cell factors that might be exploited by HCoVs to facilitate their own replication cycle. We also discuss various cellular processes, such as apoptosis, innate immunity, ER stress response, mitogen-activated protein kinase (MAPK) pathway and nuclear factor kappa B (NF-κB) pathway that may be modulated by HCoVs.
                Bookmark

                Author and article information

                Journal
                Indian J Med Res
                Indian J. Med. Res
                IJMR
                The Indian Journal of Medical Research
                Wolters Kluwer - Medknow (India )
                0971-5916
                0975-9174
                Feb-Mar 2020
                : 151
                : 2-3
                : 226-235
                Affiliations
                [1 ] Maximum Containment Laboratory, ICMR-National Institute of Virology, Pune, Maharashtra, India
                [2 ] Diagnostic Virology Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
                [3 ] Enteric Virus Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
                [4 ] Animal House, ICMR-National Institute of Virology, Pune, Maharashtra, India
                [5 ] Entomology Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
                [6 ] Poliovirus Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
                [7 ] ICMR-National Institute of Virology Kerala Unit, Alappuzha, Kerala, India
                [8 ] Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research, New Delhi, India
                [] ICMR-National Institute of Virology, Pune, Maharashtra, India
                Author notes
                For correspondence: Dr Devendra T. Mourya, ICMR-National Institute of Virology, Pune 411 021, Maharashtra, India e-mail: dtmourya@ 123456gmail.com
                Article
                IJMR-151-226
                10.4103/ijmr.IJMR_795_20
                7366549
                32317409
                1e2cff2a-adbd-44a6-bdfb-1ea585528c74
                Copyright: © 2020 Indian Journal of Medical Research

                This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

                History
                Categories
                Original Article

                Medicine
                bats,coronavirus,india,next-generation sequencing,phylogenetic,reverse transcription-polymerase chain reaction

                Comments

                Comment on this article