55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative transcriptomic analysis of male and female flowers of monoecious Quercus suber

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Monoecious species provide a comprehensive system to study the developmental programs underlying the establishment of female and male organs in unisexual flowers. However, molecular resources for most monoecious non-model species are limited, hampering our ability to study the molecular mechanisms involved in flower development of these species. The objective of this study was to identify differentially expressed genes during the development of male and female flowers of the monoecious species Quercus suber, an economically important Mediterranean tree. Total RNA was extracted from different developmental stages of Q. suber flowers. Non-normalized cDNA libraries of male and female flowers were generated using 454 pyrosequencing technology producing a total of 962,172 high-quality reads with an average length of 264 nucleotides. The assembly of the reads resulted in 14,488 contigs for female libraries and 10,438 contigs for male libraries. Comparative analysis of the transcriptomes revealed genes differentially expressed in early and late stages of development of female and male flowers, some of which have been shown to be involved in pollen development, in ovule formation and in flower development of other species with a monoecious, dioecious, or hermaphroditic sexual system. Moreover, we found differentially expressed genes that have not yet been characterized and others that have not been previously shown to be implicated in flower development. This transcriptomic analysis constitutes a major step toward the characterization of the molecular mechanisms involved in flower development in a monoecious tree with a potential contribution toward the knowledge of conserved developmental mechanisms in other species.

          Related collections

          Most cited references99

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis.

            Cold temperatures trigger the expression of the CBF family of transcription factors, which in turn activate many downstream genes that confer chilling and freezing tolerance to plants. We report here the identification of ICE1 (inducer of CBF expression 1), an upstream transcription factor that regulates the transcription of CBF genes in the cold. An Arabidopsis ice1 mutant was isolated in a screen for mutations that impair cold-induced transcription of a CBF3 promoter-luciferase reporter gene. The ice1 mutation blocks the expression of CBF3 and decreases the expression of many genes downstream of CBFs, which leads to a significant reduction in plant chilling and freezing tolerance. ICE1 encodes a MYC-like bHLH transcriptional activator. ICE1 binds specifically to the MYC recognition sequences in the CBF3 promoter. ICE1 is expressed constitutively, and its overexpression in wild-type plants enhances the expression of the CBF regulon in the cold and improves freezing tolerance of the transgenic plants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant.

              Mutations in CUC1 and CUC2 (for CUP-SHAPED COTYLEDON), which are newly identified genes of Arabidopsis, caused defects in the separation of cotyledons (embryonic organs), sepals, and stamens (floral organs) as well as in the formation of shoot apical meristems. These defects were most apparent in the double mutant. Phenotypes of the mutants suggest a common mechanism for separating adjacent organs within the same whorl in both embryos and flowers. We cloned the CUC2 gene and found that the encoded protein was homologous to the petunia NO APICAL MERISTEM (NAM) protein, which is thought to act in the development of embryos and flowers.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                06 November 2014
                2014
                : 5
                : 599
                Affiliations
                [1] 1Departamento de Recursos Naturais Ambiente e Território, Instituto Superior de Agronomia, Universidade de Lisboa Lisboa, Portugal
                [2] 2Centre for Biodiversity, Functional & Integrative Genomics, Plant Functional Biology Centre, University of Minho Braga, Portugal
                [3] 3Departamento de Biologia, Faculdade de Ciências da Universidade do Porto Porto, Portugal
                [4] 4Biocant, Parque Tecnológico de Cantanhede Cantanhede, Portugal
                Author notes

                Edited by: Dazhong Dave Zhao, University of Wisconsin-Milwaukee, USA

                Reviewed by: Oliver Gailing, Michigan Technological University, USA; Wen-Wu Guo, Huazhong Agricultural University, China; Qingyi Yu, Texas A&M AgriLife Research, USA

                *Correspondence: Leonor Morais-Cecílio, Departamento de Recursos Naturais Ambiente e Território, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal e-mail: lmorais@ 123456isa.ulisboa.pt ;
                Maria M. R. Costa, Centre for Biodiversity, Functional & Integrative Genomics, Plant Functional Biology Centre, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal e-mail: manuela.costa@ 123456bio.uminho.pt

                This article was submitted to Plant Evolution and Development, a section of the journal Frontiers in Plant Science.

                †These authors have contributed equally to this work.

                Article
                10.3389/fpls.2014.00599
                4222140
                1df8c40f-c83f-4725-ae52-6ca2333468e6
                Copyright © 2014 Rocheta, Sobral, Magalhães, Amorim, Ribeiro, Pinheiro, Egas, Morais-Cecílio and Costa.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 September 2014
                : 14 October 2014
                Page count
                Figures: 4, Tables: 5, Equations: 0, References: 125, Pages: 16, Words: 11861
                Categories
                Plant Science
                Original Research Article

                Plant science & Botany
                flower development,monoecious,pyrosequencing,quercus suber,rna-seq,transcriptomics,cork oak,est

                Comments

                Comment on this article