18
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of Plant Growth and Development: A Review From a Chromatin Remodeling Perspective

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In eukaryotes, genetic material is packaged into a dynamic but stable nucleoprotein structure called chromatin. Post-translational modification of chromatin domains affects the expression of underlying genes and subsequently the identity of cells by conveying epigenetic information from mother to daughter cells. SWI/SNF chromatin remodelers are ATP-dependent complexes that modulate core histone protein polypeptides, incorporate variant histone species and modify nucleotides in DNA strands within the nucleosome. The present review discusses the SWI/SNF chromatin remodeler family, its classification and recent advancements. We also address the involvement of SWI/SNF remodelers in regulating vital plant growth and development processes such as meristem establishment and maintenance, cell differentiation, organ initiation, flower morphogenesis and flowering time regulation. Moreover, the role of chromatin remodelers in key phytohormone signaling pathways is also reviewed. The information provided in this review may prompt further debate and investigations aimed at understanding plant-specific epigenetic regulation mediated by chromatin remodeling under continuously varying plant growth conditions and global climate change.

          Related collections

          Most cited references102

          • Record: found
          • Abstract: found
          • Article: not found

          The biology of chromatin remodeling complexes.

          The packaging of chromosomal DNA by nucleosomes condenses and organizes the genome, but occludes many regulatory DNA elements. However, this constraint also allows nucleosomes and other chromatin components to actively participate in the regulation of transcription, chromosome segregation, DNA replication, and DNA repair. To enable dynamic access to packaged DNA and to tailor nucleosome composition in chromosomal regions, cells have evolved a set of specialized chromatin remodeling complexes (remodelers). Remodelers use the energy of ATP hydrolysis to move, destabilize, eject, or restructure nucleosomes. Here, we address many aspects of remodeler biology: their targeting, mechanism, regulation, shared and unique properties, and specialization for particular biological processes. We also address roles for remodelers in development, cancer, and human syndromes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of multiple distinct Snf2 subfamilies with conserved structural motifs

            The Snf2 family of helicase-related proteins includes the catalytic subunits of ATP-dependent chromatin remodelling complexes found in all eukaryotes. These act to regulate the structure and dynamic properties of chromatin and so influence a broad range of nuclear processes. We have exploited progress in genome sequencing to assemble a comprehensive catalogue of over 1300 Snf2 family members. Multiple sequence alignment of the helicase-related regions enables 24 distinct subfamilies to be identified, a considerable expansion over earlier surveys. Where information is known, there is a good correlation between biological or biochemical function and these assignments, suggesting Snf2 family motor domains are tuned for specific tasks. Scanning of complete genomes reveals all eukaryotes contain members of multiple subfamilies, whereas they are less common and not ubiquitous in eubacteria or archaea. The large sample of Snf2 proteins enables additional distinguishing conserved sequence blocks within the helicase-like motor to be identified. The establishment of a phylogeny for Snf2 proteins provides an opportunity to make informed assignments of function, and the identification of conserved motifs provides a framework for understanding the mechanisms by which these proteins function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An essential switch in subunit composition of a chromatin remodeling complex during neural development.

              Mammalian neural stem cells (NSCs) have the capacity to both self-renew and to generate all the neuronal and glial cell-types of the adult nervous system. Global chromatin changes accompany the transition from proliferating NSCs to committed neuronal lineages, but the mechanisms involved have been unclear. Using a proteomics approach, we show that a switch in subunit composition of neural, ATP-dependent SWI/SNF-like chromatin remodeling complexes accompanies this developmental transition. Proliferating neural stem and progenitor cells express complexes in which BAF45a, a Krüppel/PHD domain protein and the actin-related protein BAF53a are quantitatively associated with the SWI2/SNF2-like ATPases, Brg and Brm. As neural progenitors exit the cell cycle, these subunits are replaced by the homologous BAF45b, BAF45c, and BAF53b. BAF45a/53a subunits are necessary and sufficient for neural progenitor proliferation. Preventing the subunit switch impairs neuronal differentiation, indicating that this molecular event is essential for the transition from neural stem/progenitors to postmitotic neurons. More broadly, these studies suggest that SWI/SNF-like complexes in vertebrates achieve biological specificity by combinatorial assembly of their subunits.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                22 August 2018
                2018
                : 9
                : 1232
                Affiliations
                [1] 1Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University , Fuzhou, China
                [2] 2College of Crop Science, Fujian Agriculture and Forestry University , Fuzhou, China
                [3] 3College of Forestry, Fujian Agriculture and Forestry University , Fuzhou, China
                [4] 4College of Resources and Environment, Fujian Agriculture and Forestry University , Fuzhou, China
                [5] 5College of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou, China
                [6] 6College of Plant Protection, Fujian Agriculture and Forestry University , Fuzhou, China
                Author notes

                Edited by: Ming Luo, South China Botanical Garden (CAS), China

                Reviewed by: Chenlong Li, Agriculture and Agri-Food Canada (AAFC), Canada; Xigang Liu, Institute of Genetics and Developmental Biology (CAS), China

                These authors have contributed equally to this work

                This article was submitted to Plant Cell Biology, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2018.01232
                6113404
                30186301
                1d9afde1-c898-4794-ba58-494b6d544add
                Copyright © 2018 Ojolo, Cao, Priyadarshani, Li, Yan, Aslam, Zhao and Qin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 March 2018
                : 03 August 2018
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 120, Pages: 13, Words: 0
                Categories
                Plant Science
                Review

                Plant science & Botany
                chromatin remodeling,swi/snf complexes,histones,gene regulation,meristem,hormone signaling,plant development,flowering

                Comments

                Comment on this article