0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular modeling, synthesis, and antiproliferative evaluation of new isoxazole ring linked by Schiff bases and azo bond

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          A BSTRACT

          Lung cancer is the most common malignancy worldwide, with approximately 1.8 million new cases yearly. Cytotoxic drugs are frequently used in cancer treatment. Even though the medicine enhances patients’ quality of life, several drawbacks diminish its efficacy. Drug resistance and many disadvantages associated with chemotherapeutic drug side effects continue to be significant factors limiting the efficiency of cancer treatment. This necessitates developing new effective strategies that target tumors with minimal adverse effects. This research aims to overcome these issues by synthesizing a new series of compounds with an isoxazole ring attached by Schiff bases and azo bonds based on molecular docking with the (Genetic Optimization of Ligand Docking) program and estimating the pharmacokinetic properties with the Swiss ADME. The greatest-fitting compounds were then manufactured and verified by spectral analysis (FT-IR, 1H NMR, and 13C NMR), in vitro MTT assay for assessment of antiproliferative activities against A549 lung cancer cell lines showed that compounds 5a and 5b had an inhibitory concentration half-maximal inhibitory concentration (IC 50) (17.34 and 18.32 μM), respectively, which was significantly lower than the inhibitory concentration of erlotinib (IC 50 = 25.06 μM).

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer statistics, 2018

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data, available through 2014, were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data, available through 2015, were collected by the National Center for Health Statistics. In 2018, 1,735,350 new cancer cases and 609,640 cancer deaths are projected to occur in the United States. Over the past decade of data, the cancer incidence rate (2005-2014) was stable in women and declined by approximately 2% annually in men, while the cancer death rate (2006-2015) declined by about 1.5% annually in both men and women. The combined cancer death rate dropped continuously from 1991 to 2015 by a total of 26%, translating to approximately 2,378,600 fewer cancer deaths than would have been expected if death rates had remained at their peak. Of the 10 leading causes of death, only cancer declined from 2014 to 2015. In 2015, the cancer death rate was 14% higher in non-Hispanic blacks (NHBs) than non-Hispanic whites (NHWs) overall (death rate ratio [DRR], 1.14; 95% confidence interval [95% CI], 1.13-1.15), but the racial disparity was much larger for individuals aged <65 years (DRR, 1.31; 95% CI, 1.29-1.32) compared with those aged ≥65 years (DRR, 1.07; 95% CI, 1.06-1.09) and varied substantially by state. For example, the cancer death rate was lower in NHBs than NHWs in Massachusetts for all ages and in New York for individuals aged ≥65 years, whereas for those aged <65 years, it was 3 times higher in NHBs in the District of Columbia (DRR, 2.89; 95% CI, 2.16-3.91) and about 50% higher in Wisconsin (DRR, 1.78; 95% CI, 1.56-2.02), Kansas (DRR, 1.51; 95% CI, 1.25-1.81), Louisiana (DRR, 1.49; 95% CI, 1.38-1.60), Illinois (DRR, 1.48; 95% CI, 1.39-1.57), and California (DRR, 1.45; 95% CI, 1.38-1.54). Larger racial inequalities in young and middle-aged adults probably partly reflect less access to high-quality health care. CA Cancer J Clin 2018;68:7-30. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules

            To be effective as a drug, a potent molecule must reach its target in the body in sufficient concentration, and stay there in a bioactive form long enough for the expected biologic events to occur. Drug development involves assessment of absorption, distribution, metabolism and excretion (ADME) increasingly earlier in the discovery process, at a stage when considered compounds are numerous but access to the physical samples is limited. In that context, computer models constitute valid alternatives to experiments. Here, we present the new SwissADME web tool that gives free access to a pool of fast yet robust predictive models for physicochemical properties, pharmacokinetics, drug-likeness and medicinal chemistry friendliness, among which in-house proficient methods such as the BOILED-Egg, iLOGP and Bioavailability Radar. Easy efficient input and interpretation are ensured thanks to a user-friendly interface through the login-free website http://www.swissadme.ch. Specialists, but also nonexpert in cheminformatics or computational chemistry can predict rapidly key parameters for a collection of molecules to support their drug discovery endeavours.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A BOILED‐Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules

              Abstract Apart from efficacy and toxicity, many drug development failures are imputable to poor pharmacokinetics and bioavailability. Gastrointestinal absorption and brain access are two pharmacokinetic behaviors crucial to estimate at various stages of the drug discovery processes. To this end, the Brain Or IntestinaL EstimateD permeation method (BOILED‐Egg) is proposed as an accurate predictive model that works by computing the lipophilicity and polarity of small molecules. Concomitant predictions for both brain and intestinal permeation are obtained from the same two physicochemical descriptors and straightforwardly translated into molecular design, owing to the speed, accuracy, conceptual simplicity and clear graphical output of the model. The BOILED‐Egg can be applied in a variety of settings, from the filtering of chemical libraries at the early steps of drug discovery, to the evaluation of drug candidates for development.
                Bookmark

                Author and article information

                Journal
                J Adv Pharm Technol Res
                J Adv Pharm Technol Res
                JAPTR
                J Adv Pharm Technol Res
                Journal of Advanced Pharmaceutical Technology & Research
                Wolters Kluwer - Medknow (India )
                2231-4040
                0976-2094
                Jul-Sep 2023
                28 July 2023
                : 14
                : 3
                : 213-219
                Affiliations
                [1]Department of Pharmaceutical Chemistry, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
                [1 ]College of Pharmacy, Al-Farahidi University, Baghdad, Iraq
                Author notes
                Address for correspondence: Pharmacist. Duha E. Taha, Department of Pharmaceutical Chemistry, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq. E-mail: duha.emad.1984@ 123456gmail.com
                Article
                JAPTR-14-213
                10.4103/japtr.japtr_170_23
                10483917
                37692009
                1d94b9cf-aab8-43a0-9670-64992a048b5b
                Copyright: © 2023 Journal of Advanced Pharmaceutical Technology & Research

                This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

                History
                : 23 March 2023
                : 12 May 2023
                : 08 June 2023
                Categories
                Original Article

                Pharmacology & Pharmaceutical medicine
                a549,epidermal growth factor receptor,isoxazole,lung cancer,molecular docking

                Comments

                Comment on this article