Due to Albendazole's relatively low efficacy and bioavailability, Echinococcosis has proven a challenge to manage successfully, with several studies investigating ways to improve the outcome, mainly showing mixed results. We, therefore, aimed to evaluate whether Sulfonated Graphene Oxide (S-GO), as nanocarriers, could improve the mentioned outcome.
Echinococcus protoscoleces were divided into four groups based on the agent they received, which comprised control, S-GO, Albendazole, and Albendazole-loaded S-GO (S-GO-Albendazole). Then, the Bax and Bcl-2 gene expression levels and the number of surviving protoscoleces in each group were determined.
Bax gene expression increased by 121% in the 50 μg/ml concentration of the S-GO-Albendazole, while Bcl-2 gene expression decreased by 64%. Moreover, S-GO-Albendazole was approximately 18% more effective at neutralizing protoscoleces than Albendazole and 14% and 31% more effective at improving the expression of the mentioned genes, respectively ( p < 0.05). In addition, the number of surviving protoscoleces after exposure to the mentioned concentration reduced by approximately 99%.
S-GO, despite not having significant lethality on protoscoleces, significantly increased the lethality of Albendazole and, therefore, is a suitable nanocarrier. However, we recommend conducting in vivo and clinical studies to more accurately determine this nanocomplex's potential and side effects.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.