1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Olfactory bulb surroundings can help to distinguish Parkinson’s disease from non-parkinsonian olfactory dysfunction

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          • Olfactory bulb inquiry might help to develop early markers of Parkinson’s disease (PD).

          • Olfactory bulb volume is equally reduced in PD than in other olfactory dysfunctions.

          • Machine learning yield an accuracy of 88% to distinguish PD-related olfactory loss.

          • Olfactory bulb scans can help to distinguish PD-related olfactory dysfunction.

          Abstract

          Background

          The olfactory bulb is one of the first regions of insult in Parkinson’s disease (PD), consistent with the early onset of olfactory dysfunction. Investigations of the olfactory bulb may, therefore, help early pre-motor diagnosis. We aimed to investigate olfactory bulb and its surrounding regions in PD-related olfactory dysfunction when specifically compared to other forms of non-parkinsonian olfactory dysfunction (NPOD) and healthy controls.

          Methods

          We carried out MRI-based olfactory bulb volume measurements from T2-weighted imaging in scans from 15 patients diagnosed with PD, 15 patients with either post-viral or sinonasal NPOD and 15 control participants. Further, we applied a deep learning model (convolutional neural network; CNN) to scans of the olfactory bulb and its surrounding area to classify PD-related scans from NPOD-related scans.

          Results

          Compared to controls, both PD and NPOD patients had smaller olfactory bulbs, when measured manually (both p < .001) whereas no difference was found between PD and NPOD patients. In contrast, when a CNN was used to differentiate between PD patients and NPOD patients, an accuracy of 88.3% was achieved. The cortical area above the olfactory bulb which stretches around and into the olfactory sulcus appears to be a region of interest in the differentiation between PD and NPOD patients.

          Conclusion

          Measures from and around the olfactory bulb in combination with the use of a deep learning model may help differentiate PD patients from patients with NPOD, which may be used to develop early diagnostic tools based on olfactory dysfunction.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment.

          To develop a 10-minute cognitive screening tool (Montreal Cognitive Assessment, MoCA) to assist first-line physicians in detection of mild cognitive impairment (MCI), a clinical state that often progresses to dementia. Validation study. A community clinic and an academic center. Ninety-four patients meeting MCI clinical criteria supported by psychometric measures, 93 patients with mild Alzheimer's disease (AD) (Mini-Mental State Examination (MMSE) score > or =17), and 90 healthy elderly controls (NC). The MoCA and MMSE were administered to all participants, and sensitivity and specificity of both measures were assessed for detection of MCI and mild AD. Using a cutoff score 26, the MMSE had a sensitivity of 18% to detect MCI, whereas the MoCA detected 90% of MCI subjects. In the mild AD group, the MMSE had a sensitivity of 78%, whereas the MoCA detected 100%. Specificity was excellent for both MMSE and MoCA (100% and 87%, respectively). MCI as an entity is evolving and somewhat controversial. The MoCA is a brief cognitive screening tool with high sensitivity and specificity for detecting MCI as currently conceptualized in patients performing in the normal range on the MMSE.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            An inventory for measuring depression.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Systematic review of levodopa dose equivalency reporting in Parkinson's disease.

              Interpretation of clinical trials comparing different drug regimens for Parkinson's disease (PD) is complicated by the different dose intensities used: higher doses of levodopa and, possibly, other drugs produce better symptomatic control but more late complications. To address this problem, conversion factors have been calculated for antiparkinsonian drugs that yield a total daily levodopa equivalent dose (LED). LED estimates vary, so we undertook a systematic review of studies reporting LEDs to provide standardized formulae. Electronic database and hand searching of references identified 56 primary reports of LED estimates. Data were extracted and the mean and modal LEDs calculated. This yielded a standardized LED for each drug, providing a useful tool to express dose intensity of different antiparkinsonian drug regimens on a single scale. Using these conversion formulae to report LEDs would improve the consistency of reporting and assist the interpretation of clinical trials comparing different PD medications. © 2010 Movement Disorder Society.
                Bookmark

                Author and article information

                Contributors
                Journal
                Neuroimage Clin
                Neuroimage Clin
                NeuroImage : Clinical
                Elsevier
                2213-1582
                02 October 2020
                2020
                02 October 2020
                : 28
                : 102457
                Affiliations
                [a ]Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. des Forges, Trois-Rivières, Québec G9A 5H7, Canada
                [b ]Research Center, Sacré-Coeur Hospital of Montreal, 5400 boul. Gouin Ouest, Montréal, Québec H4J 1C5, Canada
                Author notes
                [* ]Corresponding author. cecilia.tremblay@ 123456uqtr.ca
                Article
                S2213-1582(20)30294-1 102457
                10.1016/j.nicl.2020.102457
                7567959
                33068873
                1d7b0d00-d3d9-4e16-babe-e10de003bf19
                © 2020 The Author(s)

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 13 June 2020
                : 19 September 2020
                : 27 September 2020
                Categories
                Regular Article

                parkinson’s disease,olfactory dysfunction,olfactory bulb volume,machine learning,convolutional neural networks

                Comments

                Comment on this article