5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Insect genomes: progress and challenges

      1 , 1 , 1 , 1 , 1 , 1 , 1 , 2
      Insect Molecular Biology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references146

          • Record: found
          • Abstract: found
          • Article: not found

          BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs.

          Genomics has revolutionized biological research, but quality assessment of the resulting assembled sequences is complicated and remains mostly limited to technical measures like N50.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            QUAST: quality assessment tool for genome assemblies.

            Limitations of genome sequencing techniques have led to dozens of assembly algorithms, none of which is perfect. A number of methods for comparing assemblers have been developed, but none is yet a recognized benchmark. Further, most existing methods for comparing assemblies are only applicable to new assemblies of finished genomes; the problem of evaluating assemblies of previously unsequenced species has not been adequately considered. Here, we present QUAST-a quality assessment tool for evaluating and comparing genome assemblies. This tool improves on leading assembly comparison software with new ideas and quality metrics. QUAST can evaluate assemblies both with a reference genome, as well as without a reference. QUAST produces many reports, summary tables and plots to help scientists in their research and in their publications. In this study, we used QUAST to compare several genome assemblers on three datasets. QUAST tables and plots for all of them are available in the Supplementary Material, and interactive versions of these reports are on the QUAST website. http://bioinf.spbau.ru/quast . Supplementary data are available at Bioinformatics online.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation

              Long-read single-molecule sequencing has revolutionized de novo genome assembly and enabled the automated reconstruction of reference-quality genomes. However, given the relatively high error rates of such technologies, efficient and accurate assembly of large repeats and closely related haplotypes remains challenging. We address these issues with Canu, a successor of Celera Assembler that is specifically designed for noisy single-molecule sequences. Canu introduces support for nanopore sequencing, halves depth-of-coverage requirements, and improves assembly continuity while simultaneously reducing runtime by an order of magnitude on large genomes versus Celera Assembler 8.2. These advances result from new overlapping and assembly algorithms, including an adaptive overlapping strategy based on tf-idf weighted MinHash and a sparse assembly graph construction that avoids collapsing diverged repeats and haplotypes. We demonstrate that Canu can reliably assemble complete microbial genomes and near-complete eukaryotic chromosomes using either Pacific Biosciences (PacBio) or Oxford Nanopore technologies and achieves a contig NG50 of >21 Mbp on both human and Drosophila melanogaster PacBio data sets. For assembly structures that cannot be linearly represented, Canu provides graph-based assembly outputs in graphical fragment assembly (GFA) format for analysis or integration with complementary phasing and scaffolding techniques. The combination of such highly resolved assembly graphs with long-range scaffolding information promises the complete and automated assembly of complex genomes.
                Bookmark

                Author and article information

                Journal
                Insect Molecular Biology
                Insect Mol Biol
                Wiley
                0962-1075
                1365-2583
                June 11 2019
                December 2019
                June 17 2019
                December 2019
                : 28
                : 6
                : 739-758
                Affiliations
                [1 ]Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and InsectsZhejiang University Hangzhou China
                [2 ]Ecology and Evolutionary BiologyUniversity of Kansas Lawrence KS USA
                Article
                10.1111/imb.12599
                31120160
                1d775f79-7888-43ee-b543-807c60bdd426
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article