1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Trans‐Regional Transport of Haze Particles From the North China Plain to Yangtze River Delta During Winter

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          Elucidating severe urban haze formation in China.

          As the world's second largest economy, China has experienced severe haze pollution, with fine particulate matter (PM) recently reaching unprecedentedly high levels across many cities, and an understanding of the PM formation mechanism is critical in the development of efficient mediation policies to minimize its regional to global impacts. We demonstrate a periodic cycle of PM episodes in Beijing that is governed by meteorological conditions and characterized by two distinct aerosol formation processes of nucleation and growth, but with a small contribution from primary emissions and regional transport of particles. Nucleation consistently precedes a polluted period, producing a high number concentration of nano-sized particles under clean conditions. Accumulation of the particle mass concentration exceeding several hundred micrograms per cubic meter is accompanied by a continuous size growth from the nucleation-mode particles over multiple days to yield numerous larger particles, distinctive from the aerosol formation typically observed in other regions worldwide. The particle compositions in Beijing, on the other hand, exhibit a similarity to those commonly measured in many global areas, consistent with the chemical constituents dominated by secondary aerosol formation. Our results highlight that regulatory controls of gaseous emissions for volatile organic compounds and nitrogen oxides from local transportation and sulfur dioxide from regional industrial sources represent the key steps to reduce the urban PM level in China.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evidence on the impact of sustained exposure to air pollution on life expectancy from China's Huai River policy.

            This paper's findings suggest that an arbitrary Chinese policy that greatly increases total suspended particulates (TSPs) air pollution is causing the 500 million residents of Northern China to lose more than 2.5 billion life years of life expectancy. The quasi-experimental empirical approach is based on China's Huai River policy, which provided free winter heating via the provision of coal for boilers in cities north of the Huai River but denied heat to the south. Using a regression discontinuity design based on distance from the Huai River, we find that ambient concentrations of TSPs are about 184 μg/m(3) [95% confidence interval (CI): 61, 307] or 55% higher in the north. Further, the results indicate that life expectancies are about 5.5 y (95% CI: 0.8, 10.2) lower in the north owing to an increased incidence of cardiorespiratory mortality. More generally, the analysis suggests that long-term exposure to an additional 100 μg/m(3) of TSPs is associated with a reduction in life expectancy at birth of about 3.0 y (95% CI: 0.4, 5.6).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transboundary health impacts of transported global air pollution and international trade

              Millions of people die every year from diseases caused by exposure to outdoor air pollution. Some studies have estimated premature mortality related to local sources of air pollution, but local air quality can also be affected by atmospheric transport of pollution from distant sources. International trade is contributing to the globalization of emission and pollution as a result of the production of goods (and their associated emissions) in one region for consumption in another region. The effects of international trade on air pollutant emissions, air quality and health have been investigated regionally, but a combined, global assessment of the health impacts related to international trade and the transport of atmospheric air pollution is lacking. Here we combine four global models to estimate premature mortality caused by fine particulate matter (PM2.5) pollution as a result of atmospheric transport and the production and consumption of goods and services in different world regions. We find that, of the 3.45 million premature deaths related to PM2.5 pollution in 2007 worldwide, about 12 per cent (411,100 deaths) were related to air pollutants emitted in a region of the world other than that in which the death occurred, and about 22 per cent (762,400 deaths) were associated with goods and services produced in one region for consumption in another. For example, PM2.5 pollution produced in China in 2007 is linked to more than 64,800 premature deaths in regions other than China, including more than 3,100 premature deaths in western Europe and the USA; on the other hand, consumption in western Europe and the USA is linked to more than 108,600 premature deaths in China. Our results reveal that the transboundary health impacts of PM2.5 pollution associated with international trade are greater than those associated with long-distance atmospheric pollutant transport.
                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of Geophysical Research: Atmospheres
                Geophys Res Atmos
                American Geophysical Union (AGU)
                2169-897X
                2169-8996
                April 27 2021
                April 14 2021
                April 27 2021
                : 126
                : 8
                Affiliations
                [1 ]Department of Atmospheric Sciences School of Earth Sciences Zhejiang University Hangzhou China
                [2 ]Key Laboratory of Resource Exploration Research of Hebei Province Hebei University of Engineering Handan China
                [3 ]State Key Laboratory of Coal Resources and Safe Mining China University of Mining and Technology Beijing China
                [4 ]School of Energy and Environment Zhongyuan University of Technology Zhengzhou China
                [5 ]State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry Institute of Atmospheric Physics Chinese Academy of Sciences Beijing China
                [6 ]School of Geography, Earth and Environmental Sciences University of Birmingham Birmingham UK
                [7 ]State Key Joint Laboratory of Environmental Simulation and Pollution Control College of Environmental Sciences and Engineering Peking University Beijing China
                [8 ]Institute of Surface‐Earth System Science School of Earth System Science Tianjin University Tianjin China
                Article
                10.1029/2020JD033778
                1d53dc1b-4445-4894-8fc6-4d3f7e8cdc03
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article