34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assembly and Activation of Alternative Complement Components on Endothelial Cell-Anchored Ultra-Large Von Willebrand Factor Links Complement and Hemostasis-Thrombosis

      research-article
      * ,
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Vascular endothelial cells (ECs) express and release protein components of the complement pathways, as well as secreting and anchoring ultra-large von Willebrand factor (ULVWF) multimers in long string-like structures that initiate platelet adhesion during hemostasis and thrombosis. The alternative complement pathway (AP) is an important non-antibody-requiring host defense system. Thrombotic microangiopathies can be associated with defective regulation of the AP (atypical hemolytic-uremic syndrome) or with inadequate cleavage by ADAMTS-13 of ULVWF multimeric strings secreted by/anchored to ECs (thrombotic thrombocytopenic purpura). Our goal was to determine if EC-anchored ULVWF strings caused the assembly and activation of AP components, thereby linking two essential defense mechanisms.

          Methodology/Principal Findings

          We quantified gene expression of these complement components in cultured human umbilical vein endothelial cells (HUVECs) by real-time PCR: C3 and C5; complement factor (CF) B, CFD, CFP, CFH and CFI of the AP; and C4 of the classical and lectin (but not alternative) complement pathways. We used fluorescent microscopy, monospecific antibodies against complement components, fluorescent secondary antibodies, and the analysis of >150 images to quantify the attachment of HUVEC-released complement proteins to ULVWF strings secreted by, and anchored to, the HUVECs (under conditions of ADAMTS-13 inhibition). We found that HUVEC-released C4 did not attach to ULVWF strings, ruling out activation of the classical and lectin pathways by the strings. In contrast, C3, FB, FD, FP and C5, FH and FI attached to ULVWF strings in quantitative patterns consistent with assembly of the AP components into active complexes. This was verified when non-functional FB blocked the formation of AP C3 convertase complexes (C3bBb) on ULVWF strings.

          Conclusions/Significance

          AP components are assembled and activated on EC-secreted/anchored ULVWF multimeric strings. Our findings provide one possible molecular mechanism for clinical linkage between different types of thrombotic and complement-mediated disorders.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: not found
          • Article: not found

          Thrombotic microangiopathies.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Atypical hemolytic uremic syndrome

            Hemolytic uremic syndrome (HUS) is defined by the triad of mechanical hemolytic anemia, thrombocytopenia and renal impairment. Atypical HUS (aHUS) defines non Shiga-toxin-HUS and even if some authors include secondary aHUS due to Streptococcus pneumoniae or other causes, aHUS designates a primary disease due to a disorder in complement alternative pathway regulation. Atypical HUS represents 5 -10% of HUS in children, but the majority of HUS in adults. The incidence of complement-aHUS is not known precisely. However, more than 1000 aHUS patients investigated for complement abnormalities have been reported. Onset is from the neonatal period to the adult age. Most patients present with hemolytic anemia, thrombocytopenia and renal failure and 20% have extra renal manifestations. Two to 10% die and one third progress to end-stage renal failure at first episode. Half of patients have relapses. Mutations in the genes encoding complement regulatory proteins factor H, membrane cofactor protein (MCP), factor I or thrombomodulin have been demonstrated in 20-30%, 5-15%, 4-10% and 3-5% of patients respectively, and mutations in the genes of C3 convertase proteins, C3 and factor B, in 2-10% and 1-4%. In addition, 6-10% of patients have anti-factor H antibodies. Diagnosis of aHUS relies on 1) No associated disease 2) No criteria for Shigatoxin-HUS (stool culture and PCR for Shiga-toxins; serology for anti-lipopolysaccharides antibodies) 3) No criteria for thrombotic thrombocytopenic purpura (serum ADAMTS 13 activity > 10%). Investigation of the complement system is required (C3, C4, factor H and factor I plasma concentration, MCP expression on leukocytes and anti-factor H antibodies; genetic screening to identify risk factors). The disease is familial in approximately 20% of pedigrees, with an autosomal recessive or dominant mode of transmission. As penetrance of the disease is 50%, genetic counseling is difficult. Plasmatherapy has been first line treatment until presently, without unquestionable demonstration of efficiency. There is a high risk of post-transplant recurrence, except in MCP-HUS. Case reports and two phase II trials show an impressive efficacy of the complement C5 blocker eculizumab, suggesting it will be the next standard of care. Except for patients treated by intensive plasmatherapy or eculizumab, the worst prognosis is in factor H-HUS, as mortality can reach 20% and 50% of survivors do not recover renal function. Half of factor I-HUS progress to end-stage renal failure. Conversely, most patients with MCP-HUS have preserved renal function. Anti-factor H antibodies-HUS has favourable outcome if treated early.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions.

              Thrombotic thrombocytopenic purpura (TTP) is a devastating thrombotic disorder caused by widespread microvascular thrombi composed of platelets and von Willebrand factor (VWF). The disorder is associated with a deficiency of the VWF-cleaving metalloprotease, ADAMTS-13, with consequent accumulation of ultralarge (UL) VWF multimers in the plasma. ULVWF multimers, unlike plasma forms of VWF, attach spontaneously to platelet GP Ibalpha, a component of the GP Ib-IX-V complex. We have found that ULVWF multimers secreted from stimulated endothelial cells (ECs) remained anchored to the endothelial surface where platelets and Chinese hamster ovary cells expressing the GP Ib-IX-V complex attached to form long beads-on-a-string structures in the presence of fluid shear stresses in both the venous (2.5 dyne/cm(2)) and arterial (20 and 50 dyne/cm(2)) ranges. Although measurement of the activity of the ADAMTS-13 VWF-cleaving metalloprotease in vitro requires prolonged incubation of the enzyme with VWF under nonphysiologic conditions, EC-derived ULVWF strings with attached platelets were cleaved within seconds to minutes in the presence of normal plasma (containing approximately 100% ADAMTS-13 activity) or in the presence of partially purified ADAMTS-13. By contrast, the strings persisted for the entire period of perfusion (10 minutes) in the presence of plasma from patients with TTP containing 0% to 10% ADAMTS-13 activity. These results suggest that cleavage of EC-derived ULVWF multimers by ADAMTS-13 is a rapid physiologic process that occurs on endothelial cell surfaces.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                29 March 2013
                : 8
                : 3
                : e59372
                Affiliations
                [1]Department of Bioengineering, Rice University, Houston, Texas, United States of America
                National Cerebral and Cardiovascular Center, Japan
                Author notes

                Competing Interests: The authors have read the journal’s policy and have the following conflicts: Provisional patent application was filed on 8/27/12. Title: Heat-inactivated complement factor B Compositions and Methods; Docket No. 002376.1302. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: NAT JM. Performed the experiments: NAT. Analyzed the data: NAT. Contributed reagents/materials/analysis tools: NAT. Wrote the paper: NAT JM.

                Article
                PONE-D-12-40518
                10.1371/journal.pone.0059372
                3612042
                23555663
                1d4ecaac-040d-4b6a-bf18-275a2cb585ab
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 December 2012
                : 14 February 2013
                Page count
                Pages: 15
                Funding
                This work was supported by grants from the Mary R. Gibson Foundation and the Mabel and Everett Hinkson Memorial Fund. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Proteins
                Coagulation Factors
                Extracellular Matrix Proteins
                Immune System Proteins
                Plasma Proteins
                Protein Interactions
                Biomacromolecule-Ligand Interactions
                Immunochemistry
                Immunology
                Immune Response
                Microbiology
                Immunity
                Immune Defense
                Inflammation
                Innate Immunity
                Molecular Cell Biology
                Cellular Types
                Endothelial Cells
                Gene Expression
                Medicine
                Clinical Immunology
                Immune System
                Complement System
                Immunologic Techniques
                Immunofluorescence
                Hematology
                Platelets
                Thrombocytopenia

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content291

                Cited by36

                Most referenced authors833