2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      iAFPs-Mv-BiTCN: Predicting antifungal peptides using self-attention transformer embedding and transform evolutionary based multi-view features with bidirectional temporal convolutional networks

      , , ,
      Artificial Intelligence in Medicine
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          From local explanations to global understanding with explainable AI for trees

          Tree-based machine learning models such as random forests, decision trees, and gradient boosted trees are popular non-linear predictive models, yet comparatively little attention has been paid to explaining their predictions. Here, we improve the interpretability of tree-based models through three main contributions: 1) The first polynomial time algorithm to compute optimal explanations based on game theory. 2) A new type of explanation that directly measures local feature interaction effects. 3) A new set of tools for understanding global model structure based on combining many local explanations of each prediction. We apply these tools to three medical machine learning problems and show how combining many high-quality local explanations allows us to represent global structure while retaining local faithfulness to the original model. These tools enable us to i) identify high magnitude but low frequency non-linear mortality risk factors in the US population, ii) highlight distinct population sub-groups with shared risk characteristics, iii) identify non-linear interaction effects among risk factors for chronic kidney disease, and iv) monitor a machine learning model deployed in a hospital by identifying which features are degrading the model’s performance over time. Given the popularity of tree-based machine learning models, these improvements to their interpretability have implications across a broad set of domains. Exact game-theoretic explanations for ensemble tree-based predictions that guarantee desirable properties.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision

            Fungal diseases kill more than 1.5 million and affect over a billion people. However, they are still a neglected topic by public health authorities even though most deaths from fungal diseases are avoidable. Serious fungal infections occur as a consequence of other health problems including asthma, AIDS, cancer, organ transplantation and corticosteroid therapies. Early accurate diagnosis allows prompt antifungal therapy; however this is often delayed or unavailable leading to death, serious chronic illness or blindness. Recent global estimates have found 3,000,000 cases of chronic pulmonary aspergillosis, ~223,100 cases of cryptococcal meningitis complicating HIV/AIDS, ~700,000 cases of invasive candidiasis, ~500,000 cases of Pneumocystis jirovecii pneumonia, ~250,000 cases of invasive aspergillosis, ~100,000 cases of disseminated histoplasmosis, over 10,000,000 cases of fungal asthma and ~1,000,000 cases of fungal keratitis occur annually. Since 2013, the Leading International Fungal Education (LIFE) portal has facilitated the estimation of the burden of serious fungal infections country by country for over 5.7 billion people (>80% of the world’s population). These studies have shown differences in the global burden between countries, within regions of the same country and between at risk populations. Here we interrogate the accuracy of these fungal infection burden estimates in the 43 published papers within the LIFE initiative.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Enriching Word Vectors with Subword Information

                Bookmark

                Author and article information

                Journal
                Artificial Intelligence in Medicine
                Artificial Intelligence in Medicine
                Elsevier BV
                09333657
                May 2024
                May 2024
                : 151
                : 102860
                Article
                10.1016/j.artmed.2024.102860
                38552379
                1d1cee7b-e585-49d0-8361-2b1384012447
                © 2024

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://www.elsevier.com/legal/tdmrep-license

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article