0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Heteropolysaccharides in sustainable corrosion inhibition: 4E (Energy, Economy, Ecology, and Effectivity) dimensions

      , , , ,
      International Journal of Biological Macromolecules
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references317

          • Record: found
          • Abstract: found
          • Article: not found

          Pectin structure and biosynthesis.

          D Mohnen (2008)
          Pectin is structurally and functionally the most complex polysaccharide in plant cell walls. Pectin has functions in plant growth, morphology, development, and plant defense and also serves as a gelling and stabilizing polymer in diverse food and specialty products and has positive effects on human health and multiple biomedical uses. Pectin is a family of galacturonic acid-rich polysaccharides including homogalacturonan, rhamnogalacturonan I, and the substituted galacturonans rhamnogalacturonan II (RG-II) and xylogalacturonan (XGA). Pectin biosynthesis is estimated to require at least 67 transferases including glycosyl-, methyl-, and acetyltransferases. New developments in understanding pectin structure, function, and biosynthesis indicate that these polysaccharides have roles in both primary and secondary cell walls. Manipulation of pectin synthesis is expected to impact diverse plant agronomical properties including plant biomass characteristics important for biofuel production.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hyaluronic acid hydrogels for biomedical applications.

            Hyaluronic acid (HA), an immunoneutral polysaccharide that is ubiquitous in the human body, is crucial for many cellular and tissue functions and has been in clinical use for over thirty years. When chemically modified, HA can be transformed into many physical forms-viscoelastic solutions, soft or stiff hydrogels, electrospun fibers, non-woven meshes, macroporous and fibrillar sponges, flexible sheets, and nanoparticulate fluids-for use in a range of preclinical and clinical settings. Many of these forms are derived from the chemical crosslinking of pendant reactive groups by addition/condensation chemistry or by radical polymerization. Clinical products for cell therapy and regenerative medicine require crosslinking chemistry that is compatible with the encapsulation of cells and injection into tissues. Moreover, an injectable clinical biomaterial must meet marketing, regulatory, and financial constraints to provide affordable products that can be approved, deployed to the clinic, and used by physicians. Many HA-derived hydrogels meet these criteria, and can deliver cells and therapeutic agents for tissue repair and regeneration. This progress report covers both basic concepts and recent advances in the development of HA-based hydrogels for biomedical applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review.

              Intensive exploration and research in the past few decades on polysaccharide nanocrystals, the highly crystalline nanoscale materials derived from natural resources, mainly focused originally on their use as a reinforcing nanophase in nanocomposites. However, these investigations have led to the emergence of more diverse potential applications exploiting the functionality of these nanomaterials. Based on the construction strategies of functional nanomaterials, this article critically and comprehensively reviews the emerging polysaccharide nanocrystal-based functional nanomaterials with special applications, such as biomedical materials, biomimetic optical nanomaterials, bio-inspired mechanically adaptive nanomaterials, permselective nanostructured membranes, template for synthesizing inorganic nanoparticles, polymer electrolytes, emulsion nano-stabilizer and decontamination of organic pollutants. We focus on the preparation, unique properties and performances of the different polysaccharide nanocrystal materials. At the same time, the advantages, physicochemical properties and chemical modifications of polysaccharide nanocrystals are also comparatively discussed in view of materials development. Finally, the perspective and current challenges of polysaccharide nanocrystals in future functional nanomaterials are outlined.
                Bookmark

                Author and article information

                Journal
                International Journal of Biological Macromolecules
                International Journal of Biological Macromolecules
                Elsevier BV
                01418130
                April 2023
                April 2023
                : 235
                : 123571
                Article
                10.1016/j.ijbiomac.2023.123571
                36750168
                1d1ad4b0-3d10-4a8b-bac1-f7104cb6547a
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article