11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Automatic tuberculosis screening using chest radiographs.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tuberculosis is a major health threat in many regions of the world. Opportunistic infections in immunocompromised HIV/AIDS patients and multi-drug-resistant bacterial strains have exacerbated the problem, while diagnosing tuberculosis still remains a challenge. When left undiagnosed and thus untreated, mortality rates of patients with tuberculosis are high. Standard diagnostics still rely on methods developed in the last century. They are slow and often unreliable. In an effort to reduce the burden of the disease, this paper presents our automated approach for detecting tuberculosis in conventional posteroanterior chest radiographs. We first extract the lung region using a graph cut segmentation method. For this lung region, we compute a set of texture and shape features, which enable the X-rays to be classified as normal or abnormal using a binary classifier. We measure the performance of our system on two datasets: a set collected by the tuberculosis control program of our local county's health department in the United States, and a set collected by Shenzhen Hospital, China. The proposed computer-aided diagnostic system for TB screening, which is ready for field deployment, achieves a performance that approaches the performance of human experts. We achieve an area under the ROC curve (AUC) of 87% (78.3% accuracy) for the first set, and an AUC of 90% (84% accuracy) for the second set. For the first set, we compare our system performance with the performance of radiologists. When trying not to miss any positive cases, radiologists achieve an accuracy of about 82% on this set, and their false positive rate is about half of our system's rate.

          Related collections

          Author and article information

          Journal
          IEEE Trans Med Imaging
          IEEE transactions on medical imaging
          Institute of Electrical and Electronics Engineers (IEEE)
          1558-254X
          0278-0062
          Feb 2014
          : 33
          : 2
          Article
          10.1109/TMI.2013.2284099
          24108713
          1cdb8a37-2562-41bc-b6e6-cf3b89ddae87
          History

          Comments

          Comment on this article