15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhancement of Insulin/PI3K/Akt Signaling Pathway and Modulation of Gut Microbiome by Probiotics Fermentation Technology, a Kefir Grain Product, in Sporadic Alzheimer’s Disease Model in Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sporadic Alzheimer’s disease (AD) is the most common neurodegenerative disorder with cognitive dysfunction. Remarkably, alteration in the gut microbiome and resultant insulin resistance has been shown to be connected to metabolic syndrome, the crucial risk factor for AD, and also to be implicated in AD pathogenesis. Thus, this study, we assessed the efficiency of probiotics fermentation technology (PFT), a kefir product, in enhancing insulin signaling via modulation of gut microbiota to halt the development of AD. We also compared its effectiveness to that of pioglitazone, an insulin sensitizer that has been confirmed to substantially treat AD. AD was induced in mice by a single injection of intracerebroventricular streptozotocin (STZ; 3 mg/kg). PFT (100, 200, 400 mg/kg) and pioglitazone (30 mg/kg) were administered orally for 3 weeks. Behavioral tests were conducted to assess cognitive function, and hippocampal levels of acetylcholine (Ach) and β-amyloid (Aβ 1–42) protein were assessed along with histological examination. Moreover, the expression of the insulin receptor, insulin degrading enzyme (IDE), and the phosphorylated forms of phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), glycogen synthase kinase-3β (GSK-3β), mammalian target of rapamycin (mTOR), and tau were detected. Furthermore, oxidative stress and inflammatory biomarkers were estimated. Treatment with PFT reversed STZ-induced neurodegeneration and cognitive impairment, enhanced hippocampal Ach levels, and reduced Aβ 1–42 levels after restoration of IDE activity. PFT also improved insulin signaling, as evidenced by upregulation of insulin receptor expression and activation of PI3K/Akt signaling with subsequent suppression of GSK-3β and mTOR signaling, which result in the downregulation of hyperphosphorylated tau. Moreover, PFT significantly diminished oxidative stress and inflammation induced by STZ. These potential effects were parallel to those produced by pioglitazone. Therefore, PFT targets multiple mechanisms incorporated in the pathogenesis of AD and hence might be a beneficial therapy for AD.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: not found
          • Article: not found

          Protein measurement with the Folin phenol reagent.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inflammatory mechanisms in obesity.

            The modern rise in obesity and its strong association with insulin resistance and type 2 diabetes have elicited interest in the underlying mechanisms of these pathologies. The discovery that obesity itself results in an inflammatory state in metabolic tissues ushered in a research field that examines the inflammatory mechanisms in obesity. Here, we summarize the unique features of this metabolic inflammatory state, termed metaflammation and defined as low-grade, chronic inflammation orchestrated by metabolic cells in response to excess nutrients and energy. We explore the effects of such inflammation in metabolic tissues including adipose, liver, muscle, pancreas, and brain and its contribution to insulin resistance and metabolic dysfunction. Another area in which many unknowns still exist is the origin or mechanism of initiation of inflammatory signaling in obesity. We discuss signals or triggers to the inflammatory response, including the possibility of endoplasmic reticulum stress as an important contributor to metaflammation. Finally, we examine anti-inflammatory therapies for their potential in the treatment of obesity-related insulin resistance and glucose intolerance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The novel object recognition memory: neurobiology, test procedure, and its modifications

              Animal models of memory have been considered as the subject of many scientific publications at least since the beginning of the twentieth century. In humans, memory is often accessed through spoken or written language, while in animals, cognitive functions must be accessed through different kind of behaviors in many specific, experimental models of memory and learning. Among them, the novel object recognition test can be evaluated by the differences in the exploration time of novel and familiar objects. Its application is not limited to a field of research and enables that various issues can be studied, such as the memory and learning, the preference for novelty, the influence of different brain regions in the process of recognition, and even the study of different drugs and their effects. This paper describes the novel object recognition paradigms in animals, as a valuable measure of cognition. The purpose of this work was to review the neurobiology and methodological modifications of the test commonly used in behavioral pharmacology.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                23 July 2021
                2021
                : 12
                : 666502
                Affiliations
                [ 1 ]Department of Pharmacology and Toxicology, Cairo University, Cairo, Egypt
                [ 2 ]Department of Surgery, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
                Author notes

                Edited by: Maria Javier Ramirez, University of Navarra, Spain

                Reviewed by: Lucian Hritcu, Alexandru Ioan Cuza University, Romania

                Gehan Heeba, Minia University, Egypt

                *Correspondence: Nesrine S. El Sayed, nesrine_salah2002@ 123456yahoo.com

                This article was submitted to Neuropharmacology, a section of the journal Frontiers in Pharmacology

                Article
                666502
                10.3389/fphar.2021.666502
                8346028
                34366841
                1cc78dab-71aa-4254-a7e7-16c9cd5f2af1
                Copyright © 2021 El Sayed, Kandil and Ghoneum.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 22 March 2021
                : 02 July 2021
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                metabolic syndrome,insulin signaling,alzheimer's disease,pi3/akt pathway,pft

                Comments

                Comment on this article