Climate observations comprise one sequence of natural internal variability and the response to external forcings. Large initial condition ensembles (LEs) performed with a single climate model provide many different sequences of internal variability and forced response. LEs allow analysts to quantify random uncertainty in the time required to detect forced “fingerprint” patterns. For tropospheric temperature, the consistency between fingerprint detection times in satellite data and in 2 different LEs depends primarily on the size of the simulated warming in response to greenhouse gas increases and the simulated cooling caused by anthropogenic aerosols. Consistency is closest for a model with high sensitivity and large aerosol-driven cooling. Assessing whether this result is physically reasonable will require reducing currently large aerosol forcing uncertainties.
Large initial condition ensembles of a climate model simulation provide many different realizations of internal variability noise superimposed on an externally forced signal. They have been used to estimate signal emergence time at individual grid points, but are rarely employed to identify global fingerprints of human influence. Here we analyze 50- and 40-member ensembles performed with 2 climate models; each was run with combined human and natural forcings. We apply a pattern-based method to determine signal detection time td in individual ensemble members. Distributions of td are characterized by the median td{m} and range td{r} , computed for tropospheric and stratospheric temperatures over 1979 to 2018. Lower stratospheric cooling—primarily caused by ozone depletion—yields td{m} values between 1994 and 1996, depending on model ensemble, domain (global or hemispheric), and type of noise data. For greenhouse-gas–driven tropospheric warming, larger noise and slower recovery from the 1991 Pinatubo eruption lead to later signal detection (between 1997 and 2003). The stochastic uncertainty td{r} is greater for tropospheric warming (8 to 15 y) than for stratospheric cooling (1 to 3 y). In the ensemble generated by a high climate sensitivity model with low anthropogenic aerosol forcing, simulated tropospheric warming is larger than observed; detection times for tropospheric warming signals in satellite data are within td{r} ranges in 60% of all cases. The corresponding number is 88% for the second ensemble, which was produced by a model with even higher climate sensitivity but with large aerosol-induced cooling. Whether the latter result is physically plausible will require concerted efforts to reduce significant uncertainties in aerosol forcing.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.