50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Concurrent Validity and Test-retest Reliability of the OPTOGait Photoelectric Cell System for the Assessment of Spatio-temporal Parameters of the Gait of Young Adults

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          [Purpose] The purpose of this study was to investigate the concurrent validity and test-retest reliability of the recently introduced OPTOGait Photoelectric Cell System for the assessment of spatio-temporal parameters of gait. [Subjects] Twenty healthy young adults (mean age = 27.35, SD = 7.4) were asked to walk 3 times on walkway at a comfortable speed. [Methods] Concurrent validity was assessed by comparing data obtained using the OPTOGait and GAITRite systems, and reliability was assessed by comparing data from the first and third OPTOGait sessions. [Results] Concurrent validity, as identified by intra-class correlation coefficients (ICC (2, 1) = 0.929–0.998), coefficients of variation (CV ME = 0.32–11.30%), and 95% limits of agreement, showed high levels of correlation. In addition, the test-retest reliability of the OPTOGait Photoelectric Cell System was demonstrated as showing a high level of correlation with all spatio-temporal parameters by intra-class correlation coefficients (ICC (3, 1) = 0.785–0.952), coefficients of variation (CV ME = 1.66–4.06%), 95% limits of agreement, standard error of measurement (SEM = 2.17–5.96%), and minimum detectable change (MDC 95% = 6.01–16.52%). [Conclusion] The OPTOGait Photoelectric Cell System has strong concurrent validity along with relative and absolute test-retest reliabilities. This portable system with easy-to-use features can be used for clinical assessments or research purposes as an objective means of assessing gait.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Statistical methods for assessing agreement between two methods of clinical measurement.

          In clinical measurement comparison of a new measurement technique with an established one is often needed to see whether they agree sufficiently for the new to replace the old. Such investigations are often analysed inappropriately, notably by using correlation coefficients. The use of correlation is misleading. An alternative approach, based on graphical techniques and simple calculations, is described, together with the relation between this analysis and the assessment of repeatability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Validity and reliability of Optojump photoelectric cells for estimating vertical jump height.

            Vertical jump is one of the most prevalent acts performed in several sport activities. It is therefore important to ensure that the measurements of vertical jump height made as a part of research or athlete support work have adequate validity and reliability. The aim of this study was to evaluate concurrent validity and reliability of the Optojump photocell system (Microgate, Bolzano, Italy) with force plate measurements for estimating vertical jump height. Twenty subjects were asked to perform maximal squat jumps and countermovement jumps, and flight time-derived jump heights obtained by the force plate were compared with those provided by Optojump, to examine its concurrent (criterion-related) validity (study 1). Twenty other subjects completed the same jump series on 2 different occasions (separated by 1 week), and jump heights of session 1 were compared with session 2, to investigate test-retest reliability of the Optojump system (study 2). Intraclass correlation coefficients (ICCs) for validity were very high (0.997-0.998), even if a systematic difference was consistently observed between force plate and Optojump (-1.06 cm; p < 0.001). Test-retest reliability of the Optojump system was excellent, with ICCs ranging from 0.982 to 0.989, low coefficients of variation (2.7%), and low random errors (±2.81 cm). The Optojump photocell system demonstrated strong concurrent validity and excellent test-retest reliability for the estimation of vertical jump height. We propose the following equation that allows force plate and Optojump results to be used interchangeably: force plate jump height (cm) = 1.02 × Optojump jump height + 0.29. In conclusion, the use of Optojump photoelectric cells is legitimate for field-based assessments of vertical jump height.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reliability of the GAITRite walkway system for the quantification of temporo-spatial parameters of gait in young and older people.

              The purpose of this study was to evaluate the test-retest reliability of an instrumented walkway system (the GAITRite mat) for the measurement of temporal and spatial parameters of gait in young and older people. Thirty young subjects (12 males, 18 females) aged between 22 and 40 years (mean 28.5, S.D. 4.8) and 31 older subjects (13 males, 18 females) aged between 76 and 87 years (mean 80.8, S.D. 3.1) walked at a self-selected comfortable walking speed across the pressure-sensor mat three times and repeated the process approximately 2 weeks later. Intra-class correlation coefficients (ICC), coefficients of variation (CV) and 95% limits of agreement were then determined. For both groups of subjects, the reliability of walking speed, cadence and step length was excellent (ICCs between 0.82 and 0.92 and CVs between 1.4 and 3.5%). Base of support and toe in/out angles, although exhibiting high ICCs, were associated with higher CVs (8.3-17.7% in young subjects and 14.3-33.0% in older subjects). It is concluded that the GAITRite mat exhibits excellent reliability for most temporo-spatial gait parameters in both young and older subjects, however, base of support and toe in/out angles need to viewed with some caution, particularly in older people. Copyright 2003 Elsevier B.V.
                Bookmark

                Author and article information

                Journal
                J Phys Ther Sci
                J Phys Ther Sci
                JPTS
                Journal of Physical Therapy Science
                The Society of Physical Therapy Science
                0915-5287
                2187-5626
                06 February 2014
                January 2014
                : 26
                : 1
                : 81-85
                Affiliations
                [1) ] Department of Physical Therapy, College of Health Science, Sahmyook University, Republic of Korea
                Author notes
                [* ]Corresponding author. Chang Ho Song, Department of Physical Therapy, College of Health Science, Sahmyook University: 26-21 Gongneung 2-dong, Nowon-gu, Seoul 139-742, Republic of Korea. (e-mail: chsong@ 123456syu.ac.kr )
                Article
                jpts-2013-238
                10.1589/jpts.26.81
                3927048
                24567681
                1cbf178d-064a-4c1b-8ef6-fa70ae5b0c32
                2014©by the Society of Physical Therapy Science

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License.

                History
                : 21 May 2013
                : 12 August 2013
                Categories
                Original

                analysis,locomotion,measurement
                analysis, locomotion, measurement

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content317

                Cited by42

                Most referenced authors383