30
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mice with different susceptibility to tick-borne encephalitis virus infection show selective neutralizing antibody response and inflammatory reaction in the central nervous system

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The clinical course of tick-borne encephalitis (TBE), a disease caused by TBE virus, ranges from asymptomatic or mild influenza-like infection to severe debilitating encephalitis or encephalomyelitis. Despite the medical importance of this disease, some crucial steps in the development of encephalitis remain poorly understood. In particular, the basis of the disease severity is largely unknown.

          Methods

          TBE virus growth, neutralizing antibody response, key cytokine and chemokine mRNA production and changes in mRNA levels of cell surface markers of immunocompetent cells in brain were measured in mice with different susceptibilities to TBE virus infection.

          Results

          An animal model of TBE based on BALB/c-c-STS/A (CcS/Dem) recombinant congenic mouse strains showing different severities of the infection in relation to the host genetic background was developed. After subcutaneous inoculation of TBE virus, BALB/c mice showed medium susceptibility to the infection, STS mice were resistant, and CcS-11 mice were highly susceptible. The resistant STS mice showed lower and delayed viremia, lower virus production in the brain and low cytokine/chemokine mRNA production, but had a strong neutralizing antibody response. The most sensitive strain (CcS-11) failed in production of neutralizing antibodies, but exhibited strong cytokine/chemokine mRNA production in the brain. After intracerebral inoculation, all mouse strains were sensitive to the infection and had similar virus production in the brain, but STS mice survived significantly longer than CcS-11 mice. These two strains also differed in the expression of key cytokines/chemokines, particularly interferon gamma-induced protein 10 (IP-10/CXCL10) and monocyte chemotactic protein-1 (MCP-1/CCL2) in the brain.

          Conclusions

          Our data indicate that the genetic control is an important factor influencing the clinical course of TBE. High neutralizing antibody response might be crucial for preventing host fatality, but high expression of various cytokines/chemokines during TBE can mediate immunopathology and be associated with more severe course of the infection and increased fatality.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus.

          West Nile virus (WNV) causes severe central nervous system (CNS) infection primarily in humans who are immunocompromised or elderly. In this study, we addressed the mechanism by which the immune system limits dissemination of WNV infection by infecting wild-type and immunodeficient inbred C57BL/6J mice with a low-passage WNV isolate from the recent epidemic in New York state. Wild-type mice replicated virus extraneuronally in the draining lymph nodes and spleen during the first 4 days of infection. Subsequently, virus spread to the spinal cord and the brain at virtually the same time. Congenic mice that were genetically deficient in B cells and antibody (microMT mice) developed increased CNS viral burdens and were vulnerable to lethal infection at low doses of virus. Notably, an approximately 500-fold difference in serum viral load was detected in micro MT mice as early as 4 days after infection, a point in the infection when low levels of neutralizing immunoglobulin M antibody were detected in wild-type mice. Passive transfer of heat-inactivated serum from infected and immune wild-type mice protected micro MT mice against morbidity and mortality. We conclude that antibodies and B cells play a critical early role in the defense against disseminated infection by WNV.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Ly6c+ “inflammatory monocytes” are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis

            In a lethal West Nile virus (WNV) model, central nervous system infection triggered a threefold increase in CD45int/CD11b+/CD11c− microglia at days 6–7 postinfection (p.i.). Few microglia were proliferating, suggesting that the increased numbers were derived from a migratory precursor cell. Depletion of “circulating” (Gr1−(Ly6Clo)CX3CR1+) and “inflammatory” (Gr1hi/Ly6Chi/CCR2+) classical monocytes during infection abrogated the increase in microglia. C57BL/6 chimeras reconstituted with cFMS–enhanced green fluorescent protein (EGFP) bone marrow (BM) showed large numbers of peripherally derived (GFP+) microglia expressing GR1+(Ly6C+) at day 7 p.i., suggesting that the inflammatory monocyte is a microglial precursor. This was confirmed by adoptive transfer of labeled BM (Ly6Chi/CD115+) or circulating inflammatory monocytes that trafficked to the WNV-infected brain and expressed a microglial phenotype. CCL2 is a chemokine that is highly expressed during WNV infection and important in inflammatory monocyte trafficking. Neutralization of CCL2 not only reduced the number of GFP+ microglia in the brain during WNV infection but prolonged the life of infected animals. Therefore, CCL2-dependent inflammatory monocyte migration is critical for increases in microglia during WNV infection and may also play a pathogenic role during WNV encephalitis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IL-1β, IL-6, and RANTES as Biomarkers of Chikungunya Severity

              Background Little is known about the immunopathogenesis of Chikungunya virus. Circulating levels of immune mediators and growth factors were analyzed from patients infected during the first Singaporean Chikungunya fever outbreak in early 2008 to establish biomarkers associated with infection and/or disease severity. Methods and Findings Adult patients with laboratory-confirmed Chikungunya fever infection, who were referred to the Communicable Disease Centre/Tan Tock Seng Hospital during the period from January to February 2008, were included in this retrospective study. Plasma fractions were analyzed using a multiplex-microbead immunoassay. Among the patients, the most common clinical features were fever (100%), arthralgia (90%), rash (50%) and conjunctivitis (40%). Profiles of 30 cytokines, chemokines, and growth factors were able to discriminate the clinical forms of Chikungunya from healthy controls, with patients classified as non-severe and severe disease. Levels of 8 plasma cytokines and 4 growth factors were significantly elevated. Statistical analysis showed that an increase in IL-1β, IL-6 and a decrease in RANTES were associated with disease severity. Conclusions This is the first comprehensive report on the production of cytokines, chemokines, and growth factors during acute Chikungunya virus infection. Using these biomarkers, we were able to distinguish between mild disease and more severe forms of Chikungunya fever, thus enabling the identification of patients with poor prognosis and monitoring of the disease.
                Bookmark

                Author and article information

                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central
                1742-2094
                2013
                27 June 2013
                : 10
                : 77
                Affiliations
                [1 ]Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice CZ-37005, Czech Republic
                [2 ]Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice CZ-37005, Czech Republic
                [3 ]Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague CZ-14220, Czech Republic
                [4 ]Department of Virology, Veterinary Research Institute, Hudcova 70, Brno CZ-62100, Czech Republic
                [5 ]Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263, USA
                Article
                1742-2094-10-77
                10.1186/1742-2094-10-77
                3700758
                23805778
                1c67badd-2c76-4888-8934-9746c378f68a
                Copyright ©2013 Palus et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 March 2013
                : 11 June 2013
                Categories
                Research

                Neurosciences
                tick-borne encephalitis,flavivirus encephalitis,neuroinflammation,antibody production

                Comments

                Comment on this article