29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The molecular mechanisms of inflammation and scarring in the kidneys of immunoglobulin A nephropathy : Gene involvement in the mechanisms of inflammation and scarring in kidney biopsy of IgAN patients

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Kidney biopsy is the cornerstone for the diagnosis of immunoglobulin A nephropathy (IgAN). The immunofluorescence technique evidences the IgA deposits in the glomeruli; the routine histology shows degree of active and chronic renal lesions. The spectrum of renal lesions is highly variable, ranging from minor or no detectable lesions to diffuse proliferative or crescentic lesions. Over the past three decades, renal transcriptomic studies have been performed on fresh or frozen renal tissue, and formalin-fixed paraffin-embedded kidney tissue specimens obtained from archival histological repositories. This paper aims to describe (1) the transcriptomic profiles of the kidney biopsy and (2) the potential urinary biomarkers that can be used to monitor the follow-up of IgAN patients. The use of quantitative Real-Time Polymerase Chain Reaction (qRT-PCR), microarrays and RNA-sequencing (RNA-seq) techniques on renal tissue and separated compartments of the nephron such as glomeruli and tubule-interstitium has clarified many aspects of the renal damage in IgAN. Recently, the introduction of the single-cell RNA-seq techniques has overcome the limitations of the previous methods, making that it is possible to study the whole renal tissue without the dissection of the nephron segments; it also allows better analysis of the cell-specific gene expression involved in cell differentiation. These gene products could represent effective candidates for urinary biomarkers for clinical decision making. Finally, some of these molecules may be the targets of old drugs, such as corticosteroids, renin–angiotensin–aldosterone blockers, and new drugs such as monoclonal antibodies. In the era of personalized medicine and precision therapy, high-throughput technologies may better characterize different renal patterns of IgAN and deliver targeted treatments to individual patients.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The RIN: an RNA integrity number for assigning integrity values to RNA measurements

          Background The integrity of RNA molecules is of paramount importance for experiments that try to reflect the snapshot of gene expression at the moment of RNA extraction. Until recently, there has been no reliable standard for estimating the integrity of RNA samples and the ratio of 28S:18S ribosomal RNA, the common measure for this purpose, has been shown to be inconsistent. The advent of microcapillary electrophoretic RNA separation provides the basis for an automated high-throughput approach, in order to estimate the integrity of RNA samples in an unambiguous way. Methods A method is introduced that automatically selects features from signal measurements and constructs regression models based on a Bayesian learning technique. Feature spaces of different dimensionality are compared in the Bayesian framework, which allows selecting a final feature combination corresponding to models with high posterior probability. Results This approach is applied to a large collection of electrophoretic RNA measurements recorded with an Agilent 2100 bioanalyzer to extract an algorithm that describes RNA integrity. The resulting algorithm is a user-independent, automated and reliable procedure for standardization of RNA quality control that allows the calculation of an RNA integrity number (RIN). Conclusion Our results show the importance of taking characteristics of several regions of the recorded electropherogram into account in order to get a robust and reliable prediction of RNA integrity, especially if compared to traditional methods.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: results from a Phase 2 randomized controlled clinical trial

            Abstract Background Inflammation signaled by Janus kinases (JAKs) promotes progression of diabetic kidney disease (DKD). Baricitinib is an oral, reversible, selective inhibitor of JAK1 and JAK2. This study tested the efficacy of baricitinib versus placebo on albuminuria in adults with Type 2 diabetes at high risk for progressive DKD. Methods In this Phase 2, double-blind, dose-ranging study, participants were randomized 1:1:1:1:1 to receive placebo or baricitinib (0.75 mg daily; 0.75 mg twice daily; 1.5 mg daily; or 4 mg daily), for 24 weeks followed by 4–8 weeks of washout. Results Participants (N = 129) were 63±9.1 (mean±standard deviation) years of age, 27.1% (35/129) women and 11.6% (15/129) African-American race. Baseline hemoglobin A1c (HbA1c) was 7.3±1% and estimated glomerular filtration rate was 45.0±12.1 mL/min/1.73 m2 with first morning urine albumin–creatinine ratio (UACR) of 820 (407–1632) (median; interquartile range) mg/g. Baricitinib, 4 mg daily, decreased morning UACR by 41% at Week 24 compared with placebo (ratio to baseline 0.59, 95% confidence interval 0.38–0.93, P = 0.022). UACR was decreased at Weeks 12 and 24 and after 4–8 weeks of washout. Baricitinib 4 mg decreased inflammatory biomarkers over 24 weeks (urine C–X–C motif chemokine 10 and urine C–C motif ligand 2, plasma soluble tumor necrosis factor receptors 1 and 2, intercellular adhesion molecule 1 and serum amyloid A). The only adverse event rate that differed between groups was anemia at 32.0% (8/25) for baricitinib 4 mg daily versus 3.7% (1/27) for placebo. Conclusions Baricitinib decreased albuminuria in participants with Type 2 diabetes and DKD. Further research is required to determine if baricitinib reduces DKD progression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker.

              Chronic kidney disease (CKD) affects 8 to 16% people worldwide, with an increasing incidence and prevalence of end-stage kidney disease (ESKD). The effective management of CKD is confounded by the inability to identify patients at high risk of progression while in early stages of CKD. To address this challenge, a renal biopsy transcriptome-driven approach was applied to develop noninvasive prognostic biomarkers for CKD progression. Expression of intrarenal transcripts was correlated with the baseline estimated glomerular filtration rate (eGFR) in 261 patients. Proteins encoded by eGFR-associated transcripts were tested in urine for association with renal tissue injury and baseline eGFR. The ability to predict CKD progression, defined as the composite of ESKD or 40% reduction of baseline eGFR, was then determined in three independent CKD cohorts. A panel of intrarenal transcripts, including epidermal growth factor (EGF), a tubule-specific protein critical for cell differentiation and regeneration, predicted eGFR. The amount of EGF protein in urine (uEGF) showed significant correlation (P < 0.001) with intrarenal EGF mRNA, interstitial fibrosis/tubular atrophy, eGFR, and rate of eGFR loss. Prediction of the composite renal end point by age, gender, eGFR, and albuminuria was significantly (P < 0.001) improved by addition of uEGF, with an increase of the C-statistic from 0.75 to 0.87. Outcome predictions were replicated in two independent CKD cohorts. Our approach identified uEGF as an independent risk predictor of CKD progression. Addition of uEGF to standard clinical parameters improved the prediction of disease events in diverse CKD populations with a wide spectrum of causes and stages.
                Bookmark

                Author and article information

                Contributors
                paolo.schena@uniba.it
                Journal
                Semin Immunopathol
                Semin Immunopathol
                Seminars in Immunopathology
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                1863-2297
                1863-2300
                21 October 2021
                21 October 2021
                2021
                : 43
                : 5
                : 691-705
                Affiliations
                [1 ]GRID grid.7644.1, ISNI 0000 0001 0120 3326, Department of Emergency and Organ Transplant, , University of Bari, ; Bari, Italy
                [2 ]Schena Foundation, Policlinic, Bari, Italy
                [3 ]GRID grid.5611.3, ISNI 0000 0004 1763 1124, Department of Nephrology, , University of Verona, ; Verona, Italy
                Author information
                http://orcid.org/0000-0001-7927-5207
                http://orcid.org/0000-0002-5801-4136
                http://orcid.org/0000-0001-6303-0969
                http://orcid.org/0000-0002-6004-6196
                Article
                891
                10.1007/s00281-021-00891-8
                8551145
                34674036
                1c5ebccb-80b4-4db2-a90a-3156ab87718b
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 20 July 2021
                : 14 September 2021
                Funding
                Funded by: italian minister of university and research (mur)
                Award ID: ARS01_0087602
                Award Recipient :
                Funded by: Università degli Studi di Bari Aldo Moro
                Categories
                Review
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2021

                Pathology
                transcriptomics,immunoglobulin a nephropathy,kidney biopsy,urine
                Pathology
                transcriptomics, immunoglobulin a nephropathy, kidney biopsy, urine

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content163

                Cited by12

                Most referenced authors610