2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      POU water filters effectively reduce lead in drinking water: a demonstration field study in flint, Michigan

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A field study was conducted to test the effectiveness of faucet-mounted point of use (POU) water filters for removing high concentrations of lead in drinking water from premise plumbing sources and lead service lines (LSL). These filters were concurrently certified for total lead removal under NSF/ANSI Standard 53 (NSF/ANSI-53) and for fine particulate (Class I) reduction under NSF/ANSI Standard 42 (NSF/ANSI-42). In 2016, filtered and unfiltered drinking water samples were collected at over 345 locations in Flint, Michigan. Over 97% of filtered water samples contained lead below 0.5 μg/L. The maximum lead concentration in filtered water was 2.9 μg/L, well below the bottled water standard. The effectiveness of the POU activated carbon block filters in reducing lead concentrations, even above the 150 μg/L NSF/ANSI-53 challenge standard, is likely related to trapping particles due to the small effective pore size of the filters, in addition to ion-exchange or sorption removal of soluble lead. Properly installed and maintained POU filters, certified under both NSF/ANSI-53 (for total lead) and NSF/ANSI-42 (for fine particulate), can protect all populations, including pregnant women and children, by reducing lead in drinking water to levels that would not result in a significant increase in overall lead exposure.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Low-Level Environmental Lead Exposure and Children’s Intellectual Function: An International Pooled Analysis

          Lead is a confirmed neurotoxin, but questions remain about lead-associated intellectual deficits at blood lead levels < 10 μg/dL and whether lower exposures are, for a given change in exposure, associated with greater deficits. The objective of this study was to examine the association of intelligence test scores and blood lead concentration, especially for children who had maximal measured blood lead levels < 10 μg/dL. We examined data collected from 1,333 children who participated in seven international population-based longitudinal cohort studies, followed from birth or infancy until 5–10 years of age. The full-scale IQ score was the primary outcome measure. The geometric mean blood lead concentration of the children peaked at 17.8 μg/dL and declined to 9.4 μg/dL by 5–7 years of age; 244 (18%) children had a maximal blood lead concentration < 10 μg/dL, and 103 (8%) had a maximal blood lead concentration < 7.5 μg/dL. After adjustment for covariates, we found an inverse relationship between blood lead concentration and IQ score. Using a log-linear model, we found a 6.9 IQ point decrement [95% confidence interval (CI), 4.2–9.4] associated with an increase in concurrent blood lead levels from 2.4 to 30 μg/dL. The estimated IQ point decrements associated with an increase in blood lead from 2.4 to 10 μg/dL, 10 to 20 μg/dL, and 20 to 30 μg/dL were 3.9 (95% CI, 2.4–5.3), 1.9 (95% CI, 1.2–2.6), and 1.1 (95% CI, 0.7–1.5), respectively. For a given increase in blood lead, the lead-associated intellectual decrement for children with a maximal blood lead level < 7.5 μg/dL was significantly greater than that observed for those with a maximal blood lead level ≥7.5 μg/dL (p = 0.015). We conclude that environmental lead exposure in children who have maximal blood lead levels < 7.5 μg/dL is associated with intellectual deficits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Low-level lead exposure and mortality in US adults: a population-based cohort study

            Lead exposure is a risk factor for cardiovascular disease mortality, but the number of deaths in the USA attributable to lead exposure is poorly defined. We aimed to quantify the relative contribution of environmental lead exposure to all-cause mortality, cardiovascular disease mortality, and ischaemic heart disease mortality.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prevention of Childhood Lead Toxicity

              (2016)
              Blood lead concentrations have decreased dramatically in US children over the past 4 decades, but too many children still live in housing with deteriorated lead-based paint and are at risk for lead exposure with resulting lead-associated cognitive impairment and behavioral problems. Evidence continues to accrue that commonly encountered blood lead concentrations, even those below 5 µg/dL (50 ppb), impair cognition; there is no identified threshold or safe level of lead in blood. From 2007 to 2010, approximately 2.6% of preschool children in the United States had a blood lead concentration ≥5 µg/dL (≥50 ppb), which represents about 535 000 US children 1 to 5 years of age. Evidence-based guidance is available for managing increased lead exposure in children, and reducing sources of lead in the environment, including lead in housing, soil, water, and consumer products, has been shown to be cost-beneficial. Primary prevention should be the focus of policy on childhood lead toxicity.
                Bookmark

                Author and article information

                Journal
                Journal of Environmental Science and Health, Part A
                Journal of Environmental Science and Health, Part A
                Informa UK Limited
                1093-4529
                1532-4117
                January 24 2019
                April 16 2019
                May 10 2019
                April 16 2019
                : 54
                : 5
                : 484-493
                Affiliations
                [1 ] Ground Water &amp; Drinking Water Branch, EPA Region 5, Chicago, IL, USA;
                [2 ] NRMRL, WSD, DWTDB, EPA Office of Research and Development, Cincinnati, OH, USA
                Article
                10.1080/10934529.2019.1611141
                7402230
                31074704
                1c5a7a44-57de-4671-807c-4fef95c3262b
                © 2019

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article