128
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The G protein-coupled receptor (GPCR) Proteolysis Site (GPS) of cell-adhesion GPCRs and polycystic kidney disease (PKD) proteins constitutes a highly conserved autoproteolysis sequence, but its catalytic mechanism remains unknown. Here, we show that unexpectedly the ∼40-residue GPS motif represents an integral part of a much larger ∼320-residue domain that we termed GPCR-Autoproteolysis INducing (GAIN) domain. Crystal structures of GAIN domains from two distantly related cell-adhesion GPCRs revealed a conserved novel fold in which the GPS motif forms five β-strands that are tightly integrated into the overall GAIN domain. The GAIN domain is evolutionarily conserved from tetrahymena to mammals, is the only extracellular domain shared by all human cell-adhesion GPCRs and PKD proteins, and is the locus of multiple human disease mutations. Functionally, the GAIN domain is both necessary and sufficient for autoproteolysis, suggesting an autoproteolytic mechanism whereby the overall GAIN domain fine-tunes the chemical environment in the GPS to catalyse peptide bond hydrolysis. Thus, the GAIN domain embodies a unique, evolutionarily ancient and widespread autoproteolytic fold whose function is likely relevant for GPCR signalling and for multiple human diseases.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          The genomic landscapes of human breast and colorectal cancers.

          Human cancer is caused by the accumulation of mutations in oncogenes and tumor suppressor genes. To catalog the genetic changes that occur during tumorigenesis, we isolated DNA from 11 breast and 11 colorectal tumors and determined the sequences of the genes in the Reference Sequence database in these samples. Based on analysis of exons representing 20,857 transcripts from 18,191 genes, we conclude that the genomic landscapes of breast and colorectal cancers are composed of a handful of commonly mutated gene "mountains" and a much larger number of gene "hills" that are mutated at low frequency. We describe statistical and bioinformatic tools that may help identify mutations with a role in tumorigenesis. These results have implications for understanding the nature and heterogeneity of human cancers and for using personal genomics for tumor diagnosis and therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor.

            Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human beta2-adrenergic receptor-T4 lysozyme fusion protein bound to the partial inverse agonist carazolol at 2.4 angstrom resolution. The structure provides a high-resolution view of a human G protein-coupled receptor bound to a diffusible ligand. Ligand-binding site accessibility is enabled by the second extracellular loop, which is held out of the binding cavity by a pair of closely spaced disulfide bridges and a short helical segment within the loop. Cholesterol, a necessary component for crystallization, mediates an intriguing parallel association of receptor molecules in the crystal lattice. Although the location of carazolol in the beta2-adrenergic receptor is very similar to that of retinal in rhodopsin, structural differences in the ligand-binding site and other regions highlight the challenges in using rhodopsin as a template model for this large receptor family.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The PSIPRED protein structure prediction server.

              The PSIPRED protein structure prediction server allows users to submit a protein sequence, perform a prediction of their choice and receive the results of the prediction both textually via e-mail and graphically via the web. The user may select one of three prediction methods to apply to their sequence: PSIPRED, a highly accurate secondary structure prediction method; MEMSAT 2, a new version of a widely used transmembrane topology prediction method; or GenTHREADER, a sequence profile based fold recognition method. Freely available to non-commercial users at http://globin.bio.warwick.ac.uk/psipred/
                Bookmark

                Author and article information

                Journal
                EMBO J
                EMBO J
                The EMBO Journal
                Nature Publishing Group
                0261-4189
                1460-2075
                21 March 2012
                14 February 2012
                14 February 2012
                : 31
                : 6
                : 1364-1378
                Affiliations
                [1 ]Howard Hughes Medical Institute, Stanford, CA, USA
                [2 ]Department of Molecular and Cellular Physiology, Stanford, CA, USA
                [3 ]Departments of Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, CA, USA
                [4 ]Macromolecular Crystallographic Group, The Stanford Synchrotron Radiation Lightsource, SLAC, Stanford University, Stanford, CA, USA
                Author notes
                [a ]Howard Hughes Medical Institute, Stanford University, J.H. Clark Center, E300-C, 318 Campus Drive, Stanford, CA 94305-5432, USA. Tel.: +650 736 1714; Fax: +650 736 1961; E-mail: demeta@ 123456stanford.edu
                [b ]Howard Hughes Medical Institute, Stanford University, J.H. Clark Center, E300-C, 318 Campus Drive, Stanford, CA 94305-5432, USA. Tel.: +1 650 736 1031; Fax: +1 650 745 1463; E-mail: brunger@ 123456stanford.edu
                Article
                emboj201226
                10.1038/emboj.2012.26
                3321182
                22333914
                1c304ae2-673f-47f8-98b6-30fb97d4d15e
                Copyright © 2012, European Molecular Biology Organization

                This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial Share Alike 3.0 Unported License, which allows readers to alter, transform, or build upon the article and then distribute the resulting work under the same or similar license to this one. The work must be attributed back to the original author and commercial use is not permitted without specific permission.

                History
                : 26 September 2011
                : 16 January 2012
                Categories
                Article

                Molecular biology
                adhesion gpcrs,autoproteolysis,latrotoxin,synapse,polycystic kidney disease-1
                Molecular biology
                adhesion gpcrs, autoproteolysis, latrotoxin, synapse, polycystic kidney disease-1

                Comments

                Comment on this article