0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immunoglobulin E response in health and disease beyond allergic disorders

      1 , 2 , 3 , 2 , 4 , 5
      Allergy
      Wiley

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references151

          • Record: found
          • Abstract: found
          • Article: not found

          Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns.

          Upon delivery, the neonate is exposed for the first time to a wide array of microbes from a variety of sources, including maternal bacteria. Although prior studies have suggested that delivery mode shapes the microbiota's establishment and, subsequently, its role in child health, most researchers have focused on specific bacterial taxa or on a single body habitat, the gut. Thus, the initiation stage of human microbiome development remains obscure. The goal of the present study was to obtain a community-wide perspective on the influence of delivery mode and body habitat on the neonate's first microbiota. We used multiplexed 16S rRNA gene pyrosequencing to characterize bacterial communities from mothers and their newborn babies, four born vaginally and six born via Cesarean section. Mothers' skin, oral mucosa, and vagina were sampled 1 h before delivery, and neonates' skin, oral mucosa, and nasopharyngeal aspirate were sampled <5 min, and meconium <24 h, after delivery. We found that in direct contrast to the highly differentiated communities of their mothers, neonates harbored bacterial communities that were undifferentiated across multiple body habitats, regardless of delivery mode. Our results also show that vaginally delivered infants acquired bacterial communities resembling their own mother's vaginal microbiota, dominated by Lactobacillus, Prevotella, or Sneathia spp., and C-section infants harbored bacterial communities similar to those found on the skin surface, dominated by Staphylococcus, Corynebacterium, and Propionibacterium spp. These findings establish an important baseline for studies tracking the human microbiome's successional development in different body habitats following different delivery modes, and their associated effects on infant health.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            IDO expression by dendritic cells: tolerance and tryptophan catabolism.

            Indoleamine 2,3-dioxygenase (IDO) is an enzyme that degrades the essential amino acid tryptophan. The concept that cells expressing IDO can suppress T-cell responses and promote tolerance is a relatively new paradigm in immunology. Considerable evidence now supports this hypothesis, including studies of mammalian pregnancy, tumour resistance, chronic infections and autoimmune diseases. In this review, we summarize key recent developments and propose a unifying model for the role of IDO in tolerance induction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanism and regulation of class switch recombination.

              Antibody class switching occurs in mature B cells in response to antigen stimulation and costimulatory signals. It occurs by a unique type of intrachromosomal deletional recombination within special G-rich tandem repeated DNA sequences [called switch, or S, regions located upstream of each of the heavy chain constant (C(H)) region genes, except Cdelta]. The recombination is initiated by the B cell-specific activation-induced cytidine deaminase (AID), which deaminates cytosines in both the donor and acceptor S regions. AID activity converts several dC bases to dU bases in each S region, and the dU bases are then excised by the uracil DNA glycosylase UNG; the resulting abasic sites are nicked by apurinic/apyrimidinic endonuclease (APE). AID attacks both strands of transcriptionally active S regions, but how transcription promotes AID targeting is not entirely clear. Mismatch repair proteins are then involved in converting the resulting single-strand DNA breaks to double-strand breaks with DNA ends appropriate for end-joining recombination. Proteins required for the subsequent S-S recombination include DNA-PK, ATM, Mre11-Rad50-Nbs1, gammaH2AX, 53BP1, Mdc1, and XRCC4-ligase IV. These proteins are important for faithful joining of S regions, and in their absence aberrant recombination and chromosomal translocations involving S regions occur.
                Bookmark

                Author and article information

                Contributors
                Journal
                Allergy
                Allergy
                Wiley
                0105-4538
                1398-9995
                June 2022
                February 2022
                June 2022
                : 77
                : 6
                : 1700-1718
                Affiliations
                [1 ]Plateforme Transversale d'Allergologie et d'immunologie Clinique PFTA Clinique dermatologique CHU de Nantes Nantes France
                [2 ]Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology Nantes France
                [3 ]Hôpital Foch, Suresnes; Université de Versailles Saint‐Quentin Paris‐Saclay; INRAe Paris France
                [4 ]Labex IGO Nantes France
                [5 ]Centre d’Investigation Clinique en Biothérapie Centre de ressources biologiques (CRB) Nantes France
                Article
                10.1111/all.15230
                35073421
                1c2e28d6-89a6-4522-b533-285e98141010
                © 2022

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article