22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Advances in photosensitizer-related design for photodynamic therapy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Photodynamic therapy (PDT) is highly effective in treating tumors located near body surface, offering strong tumor suppression and low damage to normal tissue nearby. PDT is also effective for treating a number of other conditions. PDT not only provide a precise and selective method for the treatment of various diseases by itself, it can also be used in combination with other traditional therapies. Because PDT uses light as the unique targeting mechanism, it has simpler and more direct targeting capability than traditional therapies. The core material of a PDT system is the photosensitizer which converts light energy to therapeutic factors/substances. Different photosensitizers have their distinct characteristics, leading to different advantages and disadvantages. These could be enhanced or compensated by using proper PDT system. Therefore, the selected type of photosensitizer would heavily influence the overall design of a PDT system. In this article, we evaluated major types of inorganic and organic PDT photosensitizers, and discussed future research directions in the field.

          Graphical abstract

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Photodynamic therapy – mechanisms, photosensitizers and combinations

          Photodynamic therapy (PDT) is a modern and non-invasive form of therapy, used in the treatment of non-oncological diseases as well as cancers of various types and locations. It is based on the local or systemic application of a photosensitive compound - the photosensitizer, which is accumulated in pathological tissues. The photosensitizer molecules absorb the light of the appropriate wavelength, initiating the activation processes leading to the selective destruction of the inappropriate cells. The photocytotoxic reactions occur only within the pathological tissues, in the area of photosensitizer distribution, enabling selective destruction. Over the last decade, a significant acceleration in the development of nanotechnology has been observed. The combination of photosensitizers with nanomaterials can improve the photodynamic therapy efficiency and eliminate its side effects as well. The use of nanoparticles enables achievement a targeted method which is focused on specific receptors, and, as a result, increases the selectivity of the photodynamic therapy. The object of this review is the anticancer application of PDT, its advantages and possible modifications to potentiate its effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Photosensitizers for Photodynamic Therapy

            As an emerging clinical modality for cancer treatment, photodynamic therapy (PDT) takes advantage of the cytotoxic activity of reactive oxygen species (ROS) that are generated by light irradiating photosensitizers (PSs) in the presence of oxygen (O2 ). However, further advancements including tumor selectivity and ROS generation efficiency are still required. Substantial efforts are devoted to design and synthesize smart PSs with optimized properties for achieving a desirable therapeutic efficacy. This review summarizes the recent progress in developing intelligent PSs for efficient PDT, ranging from single molecules to delicate nanomaterials. The strategies to improve ROS generation through optimizing photoinduced electron transfer and energy transfer processes of PSs are highlighted. Moreover, the approaches that combine PDT with other therapeutics (e.g., chemotherapy, photothermal therapy, and radiotherapy) and the targeted delivery in cancer cells or tumor tissue are introduced. The main challenges for the clinical application of PSs are also discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Recent progress in drug delivery

              Drug delivery systems (DDS) are defined as methods by which drugs are delivered to desired tissues, organs, cells and subcellular organs for drug release and absorption through a variety of drug carriers. Its usual purpose to improve the pharmacological activities of therapeutic drugs and to overcome problems such as limited solubility, drug aggregation, low bioavailability, poor biodistribution, lack of selectivity, or to reduce the side effects of therapeutic drugs. During 2015–2018, significant progress in the research on drug delivery systems has been achieved along with advances in related fields, such as pharmaceutical sciences, material sciences and biomedical sciences. This review provides a concise overview of current progress in this research area through its focus on the delivery strategies, construction techniques and specific examples. It is a valuable reference for pharmaceutical scientists who want to learn more about the design of drug delivery systems.
                Bookmark

                Author and article information

                Contributors
                Journal
                Asian J Pharm Sci
                Asian J Pharm Sci
                Asian Journal of Pharmaceutical Sciences
                Shenyang Pharmaceutical University
                1818-0876
                2221-285X
                02 May 2021
                November 2021
                02 May 2021
                : 16
                : 6
                : 668-686
                Affiliations
                [a ]College of Polymer Science and Engineering, Sichuan University, Chengdu 610015, China
                [b ]West China School of Pharmacy, Sichuan University, Chengdu 610041, China
                [c ]West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
                Author notes
                [* ]Corresponding author. zhenmiliu@ 123456scu.edu.cn
                Article
                S1818-0876(21)00030-1
                10.1016/j.ajps.2020.12.003
                8737425
                35027948
                1c04a310-4a30-498c-8565-54a446db4cb2
                © 2021 Published by Elsevier B.V. on behalf of Shenyang Pharmaceutical University.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 23 September 2020
                : 8 December 2020
                : 23 December 2020
                Categories
                Review

                photodynamic therapy,photosensitizer,tumour treatment,combination therapy,porphyrin

                Comments

                Comment on this article