39
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Non-Linear Interactions Determine the Impact of Sea-Level Rise on Estuarine Benthic Biodiversity and Ecosystem Processes

      research-article
      1 , 2 , 1 , 1 , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sea-level rise induced by climate change may have significant impacts on the ecosystem functions and ecosystem services provided by intertidal sediment ecosystems. Accelerated sea-level rise is expected to lead to steeper beach slopes, coarser particle sizes and increased wave exposure, with consequent impacts on intertidal ecosystems. We examined the relationships between abundance, biomass, and community metabolism of benthic fauna with beach slope, particle size and exposure, using samples across a range of conditions from three different locations in the UK, to determine the significance of sediment particle size beach slope and wave exposure in affecting benthic fauna and ecosystem function in different ecological contexts. Our results show that abundance, biomass and oxygen consumption of intertidal macrofauna and meiofauna are affected significantly by interactions among sediment particle size, beach slope and wave exposure. For macrofauna on less sloping beaches, the effect of these physical constraints is mediated by the local context, although for meiofauna and for macrofauna on intermediate and steeper beaches, the effects of physical constraints dominate. Steeper beach slopes, coarser particle sizes and increased wave exposure generally result in decreases in abundance, biomass and oxygen consumption, but these relationships are complex and non-linear. Sea-level rise is likely to lead to changes in ecosystem structure with generally negative impacts on ecosystem functions and ecosystem services. However, the impacts of sea-level rise will also be affected by local ecological context, especially for less sloping beaches.

          Related collections

          Most cited references4

          • Record: found
          • Abstract: found
          • Article: not found

          Quantifying the evidence for biodiversity effects on ecosystem functioning and services.

          Concern is growing about the consequences of biodiversity loss for ecosystem functioning, for the provision of ecosystem services, and for human well being. Experimental evidence for a relationship between biodiversity and ecosystem process rates is compelling, but the issue remains contentious. Here, we present the first rigorous quantitative assessment of this relationship through meta-analysis of experimental work spanning 50 years to June 2004. We analysed 446 measures of biodiversity effects (252 in grasslands), 319 of which involved primary producer manipulations or measurements. Our analyses show that: biodiversity effects are weaker if biodiversity manipulations are less well controlled; effects of biodiversity change on processes are weaker at the ecosystem compared with the community level and are negative at the population level; productivity-related effects decline with increasing number of trophic links between those elements manipulated and those measured; biodiversity effects on stability measures ('insurance' effects) are not stronger than biodiversity effects on performance measures. For those ecosystem services which could be assessed here, there is clear evidence that biodiversity has positive effects on most. Whilst such patterns should be further confirmed, a precautionary approach to biodiversity management would seem prudent in the meantime.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Climatic warming and the decline of zooplankton in the california current.

            Since 1951, the biomass of macrozooplankton in waters off southern California has decreased by 80 percent. During the same period, the surface layer warmed-by more than 1.5 degrees C in some places-and the temperature difference across the thermocline increased. Increased stratification resulted in less lifting of the thermocline by wind-driven upwelling. A shallower source of upwelled waters provided less inorganic nutrient for new biological production and hence supported a smaller zooplankton population. Continued warming could lead to further decline of zooplankton.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Climate-related, long-term faunal changes in a california rocky intertidal community.

              Changes in the invertebrate fauna of a California rocky intertidal community between the period 1931 to 1933 and the period 1993 to 1994 indicate that species' ranges shifted northward, consistent with predictions of change associated with climate warming. Of 45 invertebrate species, the abundances of eight of nine southern species increased and the abundances of five of eight northern species decreased. No trend was evident for cosmopolitan species. Annual mean shoreline ocean temperatures at the site increased by 0.75 degrees C during the past 60 years, and mean summer maximum temperatures from 1983 to 1993 were 2.2 degrees C warmer than for the period 1921 to 1931.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                8 July 2013
                : 8
                : 7
                : e68160
                Affiliations
                [1 ]Environment Department, University of York, York, United Kingdom
                [2 ]School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom
                University College Dublin, Ireland
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: TY DR PCLW. Performed the experiments: TY. Analyzed the data: TY. Contributed reagents/materials/analysis tools: TY. Wrote the paper: TY DR PCLW.

                Article
                PONE-D-12-33035
                10.1371/journal.pone.0068160
                3704648
                23861863
                1bf0c59b-e592-4c74-ab5d-649aab15ebcf
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 26 October 2012
                : 29 May 2013
                Page count
                Pages: 8
                Funding
                The work was supported by the University of York. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
                Categories
                Research Article
                Biology
                Ecology
                Ecosystems
                Ecosystem Functioning
                Biodiversity
                Coastal Ecology
                Global Change Ecology
                Marine Biology
                Coastal Ecology
                Marine Ecology
                Earth Sciences
                Atmospheric Science
                Climatology
                Climate Change

                Uncategorized
                Uncategorized

                Comments

                Comment on this article