37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Variation in dengue virus plaque reduction neutralization testing: systematic review and pooled analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The plaque reduction neutralization test (PRNT) remains the gold standard for the detection of serologic immune responses to dengue virus (DENV). While the basic concept of the PRNT remains constant, this test has evolved in multiple laboratories, introducing variation in materials and methods. Despite the importance of laboratory-to-laboratory comparability in DENV vaccine development, the effects of differing PRNT techniques on assay results, particularly the use of different dengue strains within a serotype, have not been fully characterized.

          Methods

          We conducted a systematic review and pooled analysis of published literature reporting individual-level PRNT titers to identify factors associated with heterogeneity in PRNT results and compared variation between strains within DENV serotypes and between articles using hierarchical models.

          Results

          The literature search and selection criteria identified 8 vaccine trials and 25 natural exposure studies reporting 4,411 titers from 605 individuals using 4 different neutralization percentages, 3 cell lines, 12 virus concentrations and 51 strains. Of 1,057 titers from primary DENV exposure, titers to the exposure serotype were consistently higher than titers to non-exposure serotypes. In contrast, titers from secondary DENV exposures (n = 628) demonstrated high titers to exposure and non-exposure serotypes. Additionally, PRNT titers from different strains within a serotype varied substantially. A pooled analysis of 1,689 titers demonstrated strain choice accounted for 8.04% (90% credible interval [CrI]: 3.05%, 15.7%) of between-titer variation after adjusting for secondary exposure, time since DENV exposure, vaccination and neutralization percentage. Differences between articles (a proxy for inter-laboratory differences) accounted for 50.7% (90% CrI: 30.8%, 71.6%) of between-titer variance.

          Conclusions

          As promising vaccine candidates arise, the lack of standardized assays among diagnostic and research laboratories make unbiased inferences about vaccine-induced protection difficult. Clearly defined, widely accessible reference reagents, proficiency testing or algorithms to adjust for protocol differences would be a useful first step in improving dengue PRNT comparability and quality assurance.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Risk factors in dengue shock syndrome: a prospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak.

          In January 1980, the municipal area of Rayong, Thailand, and contiguous suburban villages were chosen for a long-term study on dengue epidemiology. From 3,185 children randomly sampled in schools and households, the population prevalence of neutralizing antibody to the four dengue serotypes was estimated. To estimate the incidence of infection with each dengue virus serotype (dengue seroconversions), first grade children were re-bled in January 1981 (cohort study). Children admitted to hospital were studied for dengue virus isolation and antibody responses in paired sera. An epidemic of dengue occurred in 1980. Plaque reduction neutralization tests of 1,009 pre-epidemic sera from children aged less than 1-10 years of age determined that 3.3% were immune to dengue 1, 13.2% to dengue 2, 6.4% to dengue 3, and 5.8% to dengue 4. Examination of pre- and post-epidemic cohort blood samples revealed that the incidence of dengue infection in 251 seronegative children was 39.4% (15.1% dengue 1, 11.1% dengue 2, 2.0% dengue 3, 4.8% dengue 4, and 6.4% two or more dengue viruses). Among the 52,935 residents of the study area, there were 22 cases of virologically and clinically confirmed dengue shock syndrome, in children 15 years or younger. All 22 shock syndrome cases had secondary type antibody responses. Eight of 22 had been included in the random serologic sample prior to onset of shock; five had been immune to dengue 1, two to dengue 3, one to dengue 4, and none to dengue 2. Despite the high rate of dengue 1 infections in 1980, only dengue 2 viruses were recovered from dengue shock syndrome cases, including two dengue 1 immune children with pre-illness serum specimens. Although the pre-epidemic prevalence of antibodies to dengue 1 was the lowest to any type, children with this immunologic background contributed disproportionately to shock cases. In descending order of magnitude, risk factors for dengue shock syndrome in Rayong were secondary infections with dengue 2 which followed primary infections with dengue 1, dengue 3, or dengue 4.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II.

            The antibody response to the envelope (E) glycoprotein of dengue virus (DENV) is known to play a critical role in both protection from and enhancement of disease, especially after primary infection. However, the relative amounts of homologous and heterologous anti-E antibodies and their epitopes remain unclear. In this study, we examined the antibody responses to E protein as well as to precursor membrane (PrM), capsid, and nonstructural protein 1 (NS1) of four serotypes of DENV by Western blot analysis of DENV serotype 2-infected patients with different disease severity and immune status during an outbreak in southern Taiwan in 2002. Based on the early-convalescent-phase sera tested, the rates of antibody responses to PrM and NS1 proteins were significantly higher in patients with secondary infection than in those with primary infection. A blocking experiment and neutralization assay showed that more than 90% of anti-E antibodies after primary infection were cross-reactive and nonneutralizing against heterologous serotypes and that only a minor proportion were type specific, which may account for the type-specific neutralization activity. Moreover, the E-binding activity in sera of 10 patients with primary infection was greatly reduced by amino acid replacements of three fusion loop residues, tryptophan at position 101, leucine at position 107, and phenylalanine at position 108, but not by replacements of those outside the fusion loop of domain II, suggesting that the predominantly cross-reactive anti-E antibodies recognized epitopes involving the highly conserved residues at the fusion loop of domain II. These findings have implications for our understanding of the pathogenesis of dengue and for the future design of subunit vaccine against DENV as well.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The WHO dengue classification and case definitions: time for a reassessment.

                Bookmark

                Author and article information

                Journal
                BMC Infect Dis
                BMC Infect. Dis
                BMC Infectious Diseases
                BioMed Central
                1471-2334
                2012
                28 September 2012
                : 12
                : 233
                Affiliations
                [1 ]Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
                Article
                1471-2334-12-233
                10.1186/1471-2334-12-233
                3519720
                23020074
                1b8e67ea-73cb-4126-9501-229ca34f6c43
                Copyright ©2012 Rainwater-Lovett et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 31 March 2012
                : 25 September 2012
                Categories
                Research Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article