16
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Association Between Air Pollution and COVID‐19 Pandemic: An Investigation in Mumbai, India

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spatial hot spots of COVID‐19 infections and fatalities are observed at places exposed to high levels of air pollution across many countries. This study empirically investigates the relationship between exposure to air pollutants that is, sulfur dioxide, nitrogen dioxide, and particulate matter (SO 2, NO 2, and PM 10) and COVID‐19 infection at the smallest administrative level (ward) of Mumbai City in India. The paper explores two hypotheses: COVID‐19 infection is associated with air pollution; the pollutants act as determinants of COVID‐19 deaths. Kriging is used to assess the spatial variations of air quality using pollution data, while information on COVID‐19 are retrieved from the database of Mumbai municipality. Annual average of PM 10 in Mumbai over the past 3 years is much higher than the WHO specified standard across all wards; further, suburbs are more exposed to SO 2, and NO 2 pollution. Bivariate local indicator of spatial autocorrelation finds significant positive relation between pollution and COVID‐19 infected cases in certain suburban wards. Spatial Auto Regressive models suggest that COVID‐19 death in Mumbai is distinctly associated with higher exposure to NO 2, population density and number of waste water drains. If specific pollutants along with other factors play considerable role in COVID‐19 infection, it has strong implications for any mitigation strategy development with an objective to curtail the spreading of the respiratory disease. These findings, first of its kind in India, could prove to be significant pointers toward disease alleviation and better urban living.

          Key Points

          • Significant association between COVID‐19 infection with SO 2, NO 2, and PM 10 reveals spatial hot spots in Mumbai

          • With increase in NO 2 there is substantial increase in COVID‐19 deaths in Mumbai

          • Air quality is an important element to address COVID‐19 management and sustainable urban development

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China

          Summary Background A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. Methods All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by WHO and the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. Findings By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0–58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0–13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. Interpretation The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. Funding Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia

            Abstract Background The initial cases of novel coronavirus (2019-nCoV)–infected pneumonia (NCIP) occurred in Wuhan, Hubei Province, China, in December 2019 and January 2020. We analyzed data on the first 425 confirmed cases in Wuhan to determine the epidemiologic characteristics of NCIP. Methods We collected information on demographic characteristics, exposure history, and illness timelines of laboratory-confirmed cases of NCIP that had been reported by January 22, 2020. We described characteristics of the cases and estimated the key epidemiologic time-delay distributions. In the early period of exponential growth, we estimated the epidemic doubling time and the basic reproductive number. Results Among the first 425 patients with confirmed NCIP, the median age was 59 years and 56% were male. The majority of cases (55%) with onset before January 1, 2020, were linked to the Huanan Seafood Wholesale Market, as compared with 8.6% of the subsequent cases. The mean incubation period was 5.2 days (95% confidence interval [CI], 4.1 to 7.0), with the 95th percentile of the distribution at 12.5 days. In its early stages, the epidemic doubled in size every 7.4 days. With a mean serial interval of 7.5 days (95% CI, 5.3 to 19), the basic reproductive number was estimated to be 2.2 (95% CI, 1.4 to 3.9). Conclusions On the basis of this information, there is evidence that human-to-human transmission has occurred among close contacts since the middle of December 2019. Considerable efforts to reduce transmission will be required to control outbreaks if similar dynamics apply elsewhere. Measures to prevent or reduce transmission should be implemented in populations at risk. (Funded by the Ministry of Science and Technology of China and others.)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A new coronavirus associated with human respiratory disease in China

              Emerging infectious diseases, such as severe acute respiratory syndrome (SARS) and Zika virus disease, present a major threat to public health 1–3 . Despite intense research efforts, how, when and where new diseases appear are still a source of considerable uncertainty. A severe respiratory disease was recently reported in Wuhan, Hubei province, China. As of 25 January 2020, at least 1,975 cases had been reported since the first patient was hospitalized on 12 December 2019. Epidemiological investigations have suggested that the outbreak was associated with a seafood market in Wuhan. Here we study a single patient who was a worker at the market and who was admitted to the Central Hospital of Wuhan on 26 December 2019 while experiencing a severe respiratory syndrome that included fever, dizziness and a cough. Metagenomic RNA sequencing 4 of a sample of bronchoalveolar lavage fluid from the patient identified a new RNA virus strain from the family Coronaviridae, which is designated here ‘WH-Human 1’ coronavirus (and has also been referred to as ‘2019-nCoV’). Phylogenetic analysis of the complete viral genome (29,903 nucleotides) revealed that the virus was most closely related (89.1% nucleotide similarity) to a group of SARS-like coronaviruses (genus Betacoronavirus, subgenus Sarbecovirus) that had previously been found in bats in China 5 . This outbreak highlights the ongoing ability of viral spill-over from animals to cause severe disease in humans.
                Bookmark

                Author and article information

                Contributors
                subhojitshaw93@gmail.com
                Journal
                Geohealth
                Geohealth
                10.1002/(ISSN)2471-1403
                GH2
                GeoHealth
                John Wiley and Sons Inc. (Hoboken )
                2471-1403
                July 2021
                01 July 2021
                : 5
                : 7 ( doiID: 10.1002/gh2.v5.7 )
                : e2021GH000383
                Affiliations
                [ 1 ] Department of Development Studies International Institute for Population Sciences Mumbai India
                Author notes
                [*] [* ] Correspondence to:

                S. Shaw,

                subhojitshaw93@ 123456gmail.com

                Author information
                https://orcid.org/0000-0002-1722-4268
                https://orcid.org/0000-0003-2612-3175
                Article
                GH2261 2021GH000383
                10.1029/2021GH000383
                8287720
                34296050
                1b7a1cf7-373a-4c2c-8bdb-d6a9f9110c74
                © 2021. The Authors. GeoHealth published by Wiley Periodicals LLC on behalf of American Geophysical Union.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 June 2021
                : 08 January 2021
                : 01 July 2021
                Page count
                Figures: 5, Tables: 4, Pages: 16, Words: 9624
                Categories
                Geohealth
                Impacts of Climate Change: Human Health,
                Public Health
                Research Article
                Research Article
                Custom metadata
                2.0
                July 2021
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.0.4 mode:remove_FC converted:19.07.2021

                covid‐19,mumbai,air pollution,hot spots,respiratory infection,spatial regression,india

                Comments

                Comment on this article