15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neck-specific exercise improves impaired interactions between ventral neck muscles in chronic whiplash: A randomized controlled ultrasound study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic pain and disability is common in whiplash-associated disorders (WAD), leading to personal suffering, sick leave, and social cost. The cervical spine is heavily dependent on muscular support and whiplash injury can cause damage to the neck muscles, but diagnostic tools to measure neck muscle impairment and evaluate exercise interventions are lacking. Therefore, the present study investigated ventral neck muscle interactions in 26 individuals with chronic WAD randomized to neck-specific exercise (NSE) or remaining on a waiting list (WL) in 3 months. We performed real-time, non-invasive ultrasound measurements with speckle tracking analysis and calculated the deformation area and deformation rate in three ventral neck muscles. Multivariate statistics were used to analyse interactions between the muscles. After 3 months of NSE, significant improvements were observed in neck muscle interactions and pain intensity in the NSE group compared to the WL group. Thus, this study demonstrates that non-invasive ultrasound can be a diagnostic tool for muscle impairment and used to evaluate exercise interventions in WAD and stands to make a breakthrough for better management in chronic WAD.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement.

          Presented here is the conceptual basis for the assertion that the spinal stabilizing system consists of three subsystems. The vertebrae, discs, and ligaments constitute the passive subsystem. All muscles and tendons surrounding the spinal column that can apply forces to the spinal column constitute the active subsystem. The nerves and central nervous system comprise the neural subsystem, which determines the requirements for spinal stability by monitoring the various transducer signals, and directs the active subsystem to provide the needed stability. A dysfunction of a component of any one of the subsystems may lead to one or more of the following three possibilities: (a) an immediate response from other subsystems to successfully compensate, (b) a long-term adaptation response of one or more subsystems, and (c) an injury to one or more components of any subsystem. It is conceptualized that the first response results in normal function, the second results in normal function but with an altered spinal stabilizing system, and the third leads to overall system dysfunction, producing, for example, low back pain. In situations where additional loads or complex postures are anticipated, the neural control unit may alter the muscle recruitment strategy, with the temporary goal of enhancing the spine stability beyond the normal requirements.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Long-term effects of specific stabilizing exercises for first-episode low back pain.

            A randomized clinical trial with 1-year and 3-year telephone questionnaire follow-ups. To report a specific exercise intervention's long-term effects on recurrence rates in acute, first-episode low back pain patients. The pain and disability associated with an initial episode of acute low back pain (LBP) is known to resolve spontaneously in the short-term in the majority of cases. However, the recurrence rate is high, and recurrent disabling episodes remain one of the most costly problems in LBP. A deficit in the multifidus muscle has been identified in acute LBP patients, and does not resolve spontaneously on resolution of painful symptoms and resumption of normal activity. Any relation between this deficit and recurrence rate was investigated in the long-term. Thirty-nine patients with acute, first-episode LBP were medically managed and randomly allocated to either a control group or specific exercise group. Medical management included advice and use of medications. Intervention consisted of exercises aimed at rehabilitating the multifidus in cocontraction with the transversus abdominis muscle. One year and three years after treatment, telephone questionnaires were conducted with patients. Questionnaire results revealed that patients from the specific exercise group experienced fewer recurrences of LBP than patients from the control group. One year after treatment, specific exercise group recurrence was 30%, and control group recurrence was 84% (P < 0.001). Two to three years after treatment, specific exercise group recurrence was 35%, and control group recurrence was 75% (P < 0.01). Long-term results suggest that specific exercise therapy in addition to medical management and resumption of normal activity may be more effective in reducing low back pain recurrences than medical management and normal activity alone.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The pain-adaptation model: a discussion of the relationship between chronic musculoskeletal pain and motor activity.

              Articles describing motor function in five chronic musculoskeletal pain conditions (temporomandibular disorders, muscle tension headache, fibromyalgia, chronic lower back pain, and postexercise muscle soreness) were reviewed. It was concluded that the data do not support the commonly held view that the pain of these conditions is maintained by some form of tonic muscular hyperactivity. Instead, it seems clear that in these conditions the activity of agonist muscles is often reduced by pain, even when this does not arise from the muscle itself. On the other hand, pain causes small increases in the level of activity of the antagonist. As a consequence of these changes, force production and the range and velocity of movement of the affected body part are often reduced. To explain how such changes in the behaviour come about, we propose a neurophysiological model based on the phasic modulation of excitatory and inhibitory interneurons supplied by high-threshold sensory afferents. We suggest that the "dysfunction" that is characteristic of several types of chronic musculoskeletal pain is a normal protective adaptation and is not a cause of pain.
                Bookmark

                Author and article information

                Contributors
                gunnel.peterson@liu.se
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                25 June 2018
                25 June 2018
                2018
                : 8
                : 9649
                Affiliations
                [1 ]ISNI 0000 0004 1936 9457, GRID grid.8993.b, Centre for Clinical Research Sörmland, , Uppsala University, ; Eskilstuna, Sweden
                [2 ]ISNI 0000 0001 2162 9922, GRID grid.5640.7, Department of Medical and Health Sciences, , Division of Physiotherapy, Faculty of Health Sciences, Linköping University, ; Linköping, Sweden
                [3 ]ISNI 0000 0001 1034 3451, GRID grid.12650.30, Computational Life Science Cluster (CLiC), Department of Chemistry, , Umeå University, ; Umeå, Sweden
                Article
                27685
                10.1038/s41598-018-27685-7
                6018626
                29941911
                1b306774-9700-4718-942f-bda75fb80c06
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 17 January 2018
                : 5 June 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article