3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A detailed understanding of abiotic stress tolerance in plants is essential to provide food security in the face of increasingly harsh climatic conditions. Glucosinolates (GLSs) are secondary metabolites found in the Brassicaceae that protect plants from herbivory and pathogen attack. Here we report that in Arabidopsis, aliphatic GLS levels are regulated by the auxin-sensitive Aux/IAA repressors IAA5, IAA6, and IAA19. These proteins act in a transcriptional cascade that maintains expression of GLS levels when plants are exposed to drought conditions. Loss of IAA5/6/19 results in reduced GLS levels and decreased drought tolerance. Further, we show that this phenotype is associated with a defect in stomatal regulation. Application of GLS to the iaa5,6,19 mutants restores stomatal regulation and normal drought tolerance. GLS action is dependent on the receptor kinase GHR1, suggesting that GLS may signal via reactive oxygen species. These results provide a novel connection between auxin signaling, GLS levels and drought response.

          Abstract

          Brassicaceae produce glucosinolates to protect against herbivory and pathogens. Here the authors show that auxin-sensitive Aux/IAA repressor proteins regulate aliphatic glucosinolate levels in Arabidopsis and this promotes stomatal closure via reactive oxygen species during drought stress.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid determination of free proline for water-stress studies

            Plant and Soil, 39(1), 205-207
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glucosinolate metabolites required for an Arabidopsis innate immune response.

              The perception of pathogen or microbe-associated molecular pattern molecules by plants triggers a basal defense response analogous to animal innate immunity and is defined partly by the deposition of the glucan polymer callose at the cell wall at the site of pathogen contact. Transcriptional and metabolic profiling in Arabidopsis mutants, coupled with the monitoring of pathogen-triggered callose deposition, have identified major roles in pathogen response for the plant hormone ethylene and the secondary metabolite 4-methoxy-indol-3-ylmethylglucosinolate. Two genes, PEN2 and PEN3, are also necessary for resistance to pathogens and are required for both callose deposition and glucosinolate activation, suggesting that the pathogen-triggered callose response is required for resistance to microbial pathogens. Our study shows that well-studied plant metabolites, previously identified as important in avoiding damage by herbivores, are also required as a component of the plant defense response against microbial pathogens.
                Bookmark

                Author and article information

                Contributors
                mestelle@ucsd.edu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                6 September 2019
                6 September 2019
                2019
                : 10
                : 4021
                Affiliations
                [1 ]ISNI 0000 0001 2107 4242, GRID grid.266100.3, Section of Cell and Developmental Biology and Howard Hughes Medical Institute, , University of California, ; San Diego, La Jolla CA. 92093 USA
                [2 ]ISNI 0000 0004 1936 9684, GRID grid.27860.3b, Department of Plant Sciences, , University of California, ; Davis, CA 95616 USA
                [3 ]ISNI 0000 0001 0662 7144, GRID grid.250671.7, Genomic Analysis Laboratory, , Howard Hughes Medical Institute and The Salk Institute for Biological Studies, ; La Jolla, CA 92037 USA
                Author information
                http://orcid.org/0000-0001-5799-5895
                http://orcid.org/0000-0001-5759-3175
                Article
                12002
                10.1038/s41467-019-12002-1
                6731224
                31492889
                1b194c75-73c4-4bad-b989-5aa911fdb879
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 15 March 2019
                : 16 August 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/100000057, U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS);
                Award ID: 43644
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/100000011, Howard Hughes Medical Institute (HHMI);
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                auxin,plant stress responses,drought
                Uncategorized
                auxin, plant stress responses, drought

                Comments

                Comment on this article