2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Biosynthesis and chemical diversity of β-lactone natural products

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review focuses on biosynthesis of β-lactone rings in natural products. Biosynthetic routes to β-lactones and β-lactams are compared in the context of their chemical diversity and production by divergent organisms around the tree of life.

          Abstract

          Covering: up to 2018

          β-Lactones are strained rings that are useful organic synthons and pharmaceutical warheads. Over 30 core scaffolds of β-lactone natural products have been described to date, many with potent bioactivity against bacteria, fungi, or human cancer cell lines. β-Lactone natural products are chemically diverse and have high clinical potential, but production of derivatized drug leads has been largely restricted to chemical synthesis partly due to gaps in biochemical knowledge about β-lactone biosynthesis. Here we review recent discoveries in enzymatic β-lactone ring closure via ATP-dependent synthetases, intramolecular cyclization from seven-membered rings, and thioesterase-mediated cyclization during release from nonribosomal peptide synthetase assembly lines. We also comprehensively cover the diversity and taxonomy of source organisms for β-lactone natural products including their isolation from bacteria, fungi, plants, insects, and marine sponges. This work identifies computational and experimental bottlenecks and highlights future directions for genome-based discovery of biosynthetic gene clusters that may produce novel compounds with β-lactone rings.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification

          Abstract Many antibiotics, chemotherapeutics, crop protection agents and food preservatives originate from molecules produced by bacteria, fungi or plants. In recent years, genome mining methodologies have been widely adopted to identify and characterize the biosynthetic gene clusters encoding the production of such compounds. Since 2011, the ‘antibiotics and secondary metabolite analysis shell—antiSMASH’ has assisted researchers in efficiently performing this, both as a web server and a standalone tool. Here, we present the thoroughly updated antiSMASH version 4, which adds several novel features, including prediction of gene cluster boundaries using the ClusterFinder method or the newly integrated CASSIS algorithm, improved substrate specificity prediction for non-ribosomal peptide synthetase adenylation domains based on the new SANDPUMA algorithm, improved predictions for terpene and ribosomally synthesized and post-translationally modified peptides cluster products, reporting of sequence similarity to proteins encoded in experimentally characterized gene clusters on a per-protein basis and a domain-level alignment tool for comparative analysis of trans-AT polyketide synthase assembly line architectures. Additionally, several usability features have been updated and improved. Together, these improvements make antiSMASH up-to-date with the latest developments in natural product research and will further facilitate computational genome mining for the discovery of novel bioactive molecules.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase.

            The ANL superfamily of adenylating enzymes contains acyl- and aryl-CoA synthetases, firefly luciferase, and the adenylation domains of the modular non-ribosomal peptide synthetases (NRPSs). Members of this family catalyze two partial reactions: the initial adenylation of a carboxylate to form an acyl-AMP intermediate, followed by a second partial reaction, most commonly the formation of a thioester. Recent biochemical and structural evidence has been presented that supports the use by this enzyme family of a remarkable catalytic strategy for the two catalytic steps. The enzymes use a 140 degrees domain rotation to present opposing faces of the dynamic C-terminal domain to the active site for the different partial reactions. Support for this domain alternation strategy is presented along with an explanation of the advantage of this catalytic strategy for the reaction catalyzed by the ANL enzymes. Finally, the ramifications of this domain rotation in the catalytic cycle of the modular NRPS enzymes are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules.

              Natural products have traditionally served as a dominant source of therapeutic agents. They are produced by dedicated biosynthetic gene clusters that assemble complex, bioactive molecules from simple precursors. Recent genome sequencing efforts coupled with advances in bioinformatics indicate that the majority of biosynthetic gene clusters are not expressed under normal laboratory conditions. Termed 'silent' or 'cryptic', these gene clusters represent a treasure trove for discovery of novel small molecules, their regulatory circuits and their biosynthetic pathways. In this review, we assess the capacity of exogenous small molecules in activating silent secondary metabolite gene clusters. Several approaches that have been developed are presented, including coculture techniques, ribosome engineering, chromatin remodeling and high-throughput elicitor screens. The rationale, applications and mechanisms attendant to each are discussed. Some general conclusions can be drawn from our analysis: exogenous small molecules comprise a productive avenue for the discovery of cryptic metabolites. Specifically, growth-inhibitory molecules, in some cases clinically used antibiotics, serve as effective inducers of silent biosynthetic gene clusters, suggesting that old antibiotics may be used to find new ones. The involvement of natural antibiotics in modulating secondary metabolism at subinhibitory concentrations suggests that they represent part of the microbial vocabulary through which inter- and intraspecies interactions are mediated.
                Bookmark

                Author and article information

                Journal
                NPRRDF
                Natural Product Reports
                Nat. Prod. Rep.
                Royal Society of Chemistry (RSC)
                0265-0568
                1460-4752
                March 20 2019
                2019
                : 36
                : 3
                : 458-475
                Affiliations
                [1 ]BioTechnology Institute
                [2 ]University of Minnesota – Twin Cities 140 Gortner Laboratory
                [3 ]Saint Paul
                [4 ]USA
                [5 ]Department of Chemistry
                Article
                10.1039/C8NP00052B
                30191940
                1b156495-5ff9-46e1-bcc5-5ebf9c9971f1
                © 2019

                Free to read

                http://rsc.li/journals-terms-of-use#chorus

                History

                Comments

                Comment on this article