29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      mtDNA-cGAS-STING axis-dependent NLRP3 inflammasome activation contributes to postoperative cognitive dysfunction induced by sevoflurane in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The activation of NLRP3 inflammasome in microglia is critical for neuroinflammation during postoperative cognitive dysfunction (POCD) induced by sevoflurane. However, the molecular mechanism by which sevoflurane activates the NLRP3 inflammasome in microglia remains unclear. The cGAS-STING pathway is an evolutionarily conserved inflammatory defense mechanism. The role of the cGAS-STING pathway in sevoflurane-induced NLRP3 inflammasome-dependent neuroinflammation and the underlying mechanisms require further investigation. We found that prolonged anesthesia with sevoflurane induced cognitive dysfunction and triggered the neuroinflammation characterized by the activation of NLRP3 inflammasome in vivo. Interestingly, the cGAS-STING pathway was activated in the hippocampus of mice receiving sevoflurane. While the blockade of cGAS with RU.521 attenuated cognitive dysfunction and NLRP3 inflammasome activation in mice. In vitro, we found that sevoflurane treatment significantly activated the cGAS-STING pathway in microglia, while RU.521 pre-treatment robustly inhibited sevoflurane-induced NLRP3 inflammasome activation. Mechanistically, sevoflurane-induced mitochondrial fission in microglia and released mitochondrial DNA (mtDNA) into the cytoplasm, which could be abolished with Mdivi-1. Blocking the mtDNA release via the mPTP-VDAC channel inhibitor attenuated sevoflurane-induced mtDNA cytosolic escape and reduced cGAS-STING pathway activation in microglia, finally inhibiting the NLRP3 inflammasome activation. Therefore, regulating neuroinflammation by targeting the cGAS-STING pathway may provide a novel therapeutic target for POCD.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          The cGAS–STING pathway as a therapeutic target in inflammatory diseases

          The cGAS–STING signalling pathway has emerged as a key mediator of inflammation in the settings of infection, cellular stress and tissue damage. Underlying this broad involvement of the cGAS–STING pathway is its capacity to sense and regulate the cellular response towards microbial and host-derived DNAs, which serve as ubiquitous danger-associated molecules. Insights into the structural and molecular biology of the cGAS–STING pathway have enabled the development of selective small-molecule inhibitors with the potential to target the cGAS–STING axis in a number of inflammatory diseases in humans. Here, we outline the principal elements of the cGAS–STING signalling cascade and discuss the general mechanisms underlying the association of cGAS–STING activity with various autoinflammatory, autoimmune and degenerative diseases. Finally, we outline the chemical nature of recently developed cGAS and STING antagonists and summarize their potential clinical applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell Death Program Upstream of NLRP3.

            Detection of cytosolic DNA constitutes a central event in the context of numerous infectious and sterile inflammatory conditions. Recent studies have uncovered a bipartite mode of cytosolic DNA recognition, in which the cGAS-STING axis triggers antiviral immunity, whereas AIM2 triggers inflammasome activation. Here, we show that AIM2 is dispensable for DNA-mediated inflammasome activation in human myeloid cells. Instead, detection of cytosolic DNA by the cGAS-STING axis induces a cell death program initiating potassium efflux upstream of NLRP3. Forward genetics identified regulators of lysosomal trafficking to modulate this cell death program, and subsequent studies revealed that activated STING traffics to the lysosome, where it triggers membrane permeabilization and thus lysosomal cell death (LCD). Importantly, the cGAS-STING-NLRP3 pathway constitutes the default inflammasome response during viral and bacterial infections in human myeloid cells. We conclude that targeting the cGAS-STING-LCD-NLRP3 pathway will ameliorate pathology in inflammatory conditions that are associated with cytosolic DNA sensing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recommendations for the Nomenclature of Cognitive Change Associated with Anaesthesia and Surgery—2018

              Cognitive change affecting patients after anaesthesia and surgery has been recognised for more than 100 yr. Research into cognitive change after anaesthesia and surgery accelerated in the 1980s when multiple studies utilised detailed neuropsychological testing for assessment of cognitive change after cardiac surgery. This body of work consistently documented decline in cognitive function in elderly patients after anaesthesia and surgery, and cognitive changes have been identified up to 7.5 yr afterwards. Importantly, other studies have identified that the incidence of cognitive change is similar after non-cardiac surgery. Other than the inclusion of non-surgical control groups to calculate postoperative cognitive dysfunction, research into these cognitive changes in the perioperative period has been undertaken in isolation from cognitive studies in the general population. The aim of this work is to develop similar terminology to that used in cognitive classifications of the general population for use in investigations of cognitive changes after anaesthesia and surgery. A multispecialty working group followed a modified Delphi procedure with no prespecified number of rounds comprised of three face-to-face meetings followed by online editing of draft versions.Two major classification guidelines (Diagnostic and Statistical Manual for Mental Disorders, fifth edition [DSM-5] and National Institute for Aging and the Alzheimer Association [NIA-AA]) are used outside of anaesthesia and surgery, and may be useful for inclusion of biomarkers in research. For clinical purposes, it is recommended to use the DSM-5 nomenclature. The working group recommends that 'perioperative neurocognitive disorders' be used as an overarching term for cognitive impairment identified in the preoperative or postoperative period. This includes cognitive decline diagnosed before operation (described as neurocognitive disorder); any form of acute event (postoperative delirium) and cognitive decline diagnosed up to 30 days after the procedure (delayed neurocognitive recovery) and up to 12 months (postoperative neurocognitive disorder).
                Bookmark

                Author and article information

                Journal
                Int J Biol Sci
                Int J Biol Sci
                ijbs
                International Journal of Biological Sciences
                Ivyspring International Publisher (Sydney )
                1449-2288
                2024
                3 March 2024
                : 20
                : 5
                : 1927-1946
                Affiliations
                [1 ]Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
                [2 ]Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China.
                [3 ]National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410013, China.
                [4 ]Department of Anesthesiology, Liuzhou People's Hospital, Liuzhou 545000, China.
                Author notes
                ✉ Corresponding authors: Prof. Cha-Xiang Guan or Yong Zhou, Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China, Tel.: +86073182355051, E-mail: guanchaxiang@ 123456csu.edu.cn or zhouyong421@ 123456csu.edu.cn ; Prof. Zhi-Jian You, Department of Anesthesiology, Liuzhou People's Hospital, Liuzhou, 545000, China, E-mail: 13790897097@ 123456163.com .

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                ijbsv20p1927
                10.7150/ijbs.91543
                10929193
                38481801
                1ad15861-e0bf-498a-bdab-6b8477c4b6a6
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 25 October 2023
                : 20 February 2024
                Categories
                Research Paper

                Life sciences
                postoperative cognitive dysfunction,neuroinflammation,cgas-sting,mitochondrial fission,nlrp3 inflammasome.

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content784

                Cited by6

                Most referenced authors711