1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A novel loosely structured nanofiltration membrane bioreactor for wastewater treatment: Process performance and membrane fouling

      , , ,
      Journal of Membrane Science
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Fouling in membrane bioreactors: An updated review.

          The goal of the current article is to update new findings in membrane fouling and emerging fouling mitigation strategies reported in recent years (post 2010) as a follow-up to our previous review published in Water Research (2009). According to a systematic review of the literature, membrane bioreactors (MBRs) are still actively investigated in the field of wastewater treatment. Notably, membrane fouling remains the most challenging issue in MBR operation and attracts considerable attention in MBR studies. In this review, we summarized the updated information on foulants composition and characteristics in MBRs, which greatly improves our understanding of fouling mechanisms. Furthermore, the emerging fouling control strategies (e.g., mechanically assisted aeration scouring, in-situ chemical cleaning, enzymatic and bacterial degradation of foulants, electrically assisted fouling mitigation, and nanomaterial-based membranes) are comprehensively reviewed. As a result, it is found that the fundamental understanding of dynamic changes in membrane foulants during a long-term operation is essential for the development and implementation of fouling control methods. Recently developed strategies for membrane fouling control denoted that the improvement of membrane performance is not our ultimate and only goal, less energy consumption and more green/sustainable fouling control ways are more promising to be developed and thus applied in the future. Overall, such a literature review not only demonstrates current challenges and research needs for scientists working in the area of MBR technologies, but also can provide more useful recommendations for industrial communities based on the related application cases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography--organic carbon detection--organic nitrogen detection (LC-OCD-OND).

            Size-exclusion chromatography in combination with organic carbon detection (SEC-OCD) is an established method to separate the pool of NOM into major fractions of different sizes and chemical functions and to quantify these on the basis of organic carbon. One specific approach, also known as LC-OCD-OND, is based on the Gräntzel thin-film UV-reactor. This approach is described with recent improvements in fraction assignation (humic substances, biopolymers, building blocks, low molecular weight organic acids and neutrals, hydrophobic organic carbon), the coupling of a novel organic nitrogen detector (OND), and an improved diagram for the characterisation of aquatic humic substances (HS-diagram). The diagram replaces the operational distinction between humic and fulvic acids by a continuum ranging from aquagenic fulvic acids to pedogenic humic acids. Copyright © 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Critical flux concept for microfiltration fouling

                Bookmark

                Author and article information

                Journal
                Journal of Membrane Science
                Journal of Membrane Science
                Elsevier BV
                03767388
                February 2022
                February 2022
                : 644
                : 120128
                Article
                10.1016/j.memsci.2021.120128
                1abe760a-5bf2-4cfe-90ce-ec64f8711e1a
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://www.elsevier.com/open-access/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article