42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cooperation of Sumoylated Chromosomal Proteins in rDNA Maintenance

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          SUMO is a posttranslational modifier that can modulate protein activities, interactions, and localizations. As the GFP-Smt3p fusion protein has a preference for subnucleolar localization, especially when deconjugation is impaired, the nucleolar role of SUMO can be the key to its biological functions. Using conditional triple SUMO E3 mutants, we show that defects in sumoylation impair rDNA maintenance, i.e., the rDNA segregation is defective and the rDNA copy number decreases in these mutants. Upon characterization of sumoylated proteins involved in rDNA maintenance, we established that Top1p and Top2p, which are sumoylated by Siz1p/Siz2p, most likely collaborate with substrates of Mms21p to maintain rDNA integrity. Cohesin and condensin subunits, which both play important roles in rDNA stability and structures, are potential substrates of Mms21, as their sumoylation depends on Mms21p, but not Siz1p and Siz2p. In addition, binding of cohesin and condensin to rDNA is altered in the mms21-CH E3-deficient mutant.

          Author Summary

          Disruption of the SUMO (small ubiquitin-like modifier) pathway by mutations is lethal in mammals and in budding yeast; however, the essential nature of its role remains unknown, mainly because only a small fraction of most substrate proteins is SUMO-modified. We argue that the clustering of SUMO modifications among subunits of multiprotein complexes or within biochemical pathways indicates that SUMO-modified fractions of target proteins may have specific cooperative activities, distinct from the functions of individual unmodified proteins. SUMO conjugation-mediated functions in nucleolar processes can potentially be examples of such specific cooperative pathways, as we show that SUMO conjugates have a strong preference for nucleolar localization in budding yeast. Moreover, we demonstrate that stable maintenance of the nucleolar DNA and nucleolus is dependent on the putative functional interaction between the sumoylation of topoisomerases I and II (by Siz1p/Siz2p) and substrates of Mms21p SUMO-conjugating activity.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Protein modification by SUMO.

          Small ubiquitin-related modifier (SUMO) family proteins function by becoming covalently attached to other proteins as post-translational modifications. SUMO modifies many proteins that participate in diverse cellular processes, including transcriptional regulation, nuclear transport, maintenance of genome integrity, and signal transduction. Reversible attachment of SUMO is controlled by an enzyme pathway that is analogous to the ubiquitin pathway. The functional consequences of SUMO attachment vary greatly from substrate to substrate, and in many cases are not understood at the molecular level. Frequently SUMO alters interactions of substrates with other proteins or with DNA, but SUMO can also act by blocking ubiquitin attachment sites. An unusual feature of SUMO modification is that, for most substrates, only a small fraction of the substrate is sumoylated at any given time. This review discusses our current understanding of how SUMO conjugation is controlled, as well as the roles of SUMO in a number of biological processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            At the heart of the chromosome: SMC proteins in action.

            Structural maintenance of chromosomes (SMC) proteins are ubiquitous in organisms from bacteria to humans, and function as core components of the condensin and cohesin complexes in eukaryotes. SMC proteins adopt a V-shaped structure with two long arms, each of which has an ATP-binding head domain at the distal end. It is important to understand how these uniquely designed protein machines interact with DNA strands and how such interactions are modulated by the ATP-binding and -hydrolysis cycle. An emerging idea is that SMC proteins use a diverse array of intramolecular and intermolecular protein-protein interactions to actively fold, tether and manipulate DNA strands.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization.

              Through a genetic screen using myosin-like protein strains mlp1Delta mlp2Delta and biochemical purification, we identified a complex of eight proteins, each required for growth and DNA repair in Saccharomyces cerevisiae. Among the subunits are Mms21 that contains a putative Siz/PIAS (protein inhibitor of activated signal transducer and activator of transcription) RING domain characteristic of small ubiquitin-like modifier (SUMO) ligases, two structural-maintenance-of-chromosome (Smc) proteins, Smc5 and Smc6, and a protein that contains an ubiquitin ligase signature domain. We show that these proteins colocalized to several distinct nuclear foci. Biochemical and genetic data demonstrated that Mms21 indeed functions as a SUMO ligase and that this activity requires the Siz/PIAS (protein inhibitor of activated signal transducer and activator of transcription) RING domain. The substrates for this SUMO ligase include a subunit of the octameric complex, Smc5, and the DNA repair protein Yku70. We further show that the abolition of the SUMO E3 activity of Mms21 leads to such disparate phenotypes as DNA damage sensitivity, defects in nucleolar integrity and telomere clustering, silencing, and length regulation. We propose that Mms21 sumoylates proteins involved in these diverse processes and that the other members of the complex, particularly Smc5/6, facilitate proper substrate sumoylation by localizing Mms21 to specific chromosomal regions.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                October 2008
                October 2008
                10 October 2008
                : 4
                : 10
                : e1000215
                Affiliations
                [1 ]Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
                [2 ]University of Plovdiv, Plovdiv, Bulgaria
                [3 ]Molecular Biology Department, Memorial Sloan Kettering Institute, New York, New York, United States of America
                [4 ]The Rockefeller University, New York, New York, United States of America
                Yale University, United States of America
                Author notes
                [¤]

                Current address: Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany

                Conceived and designed the experiments: YT AS. Performed the experiments: YT SD. Analyzed the data: YT SD XZ AS. Contributed reagents/materials/analysis tools: XL NJH XZ. Wrote the paper: YT XZ AS.

                Article
                08-PLGE-RA-0635R2
                10.1371/journal.pgen.1000215
                2563031
                18846224
                1aaabd60-c132-4102-b50b-73de395de817
                This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
                History
                : 2 June 2008
                : 3 September 2008
                Page count
                Pages: 12
                Categories
                Research Article
                Biochemistry/Macromolecular Assemblies and Machines
                Cell Biology/Cell Growth and Division
                Genetics and Genomics
                Genetics and Genomics/Chromosome Biology
                Genetics and Genomics/Epigenetics
                Genetics and Genomics/Functional Genomics

                Genetics
                Genetics

                Comments

                Comment on this article