9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cobalt Modulated Mo-Dinitrogen Interaction in MoS2 for Catalyzing Ammonia Synthesis

      , , , , , , , ,
      Journal of the American Chemical Society
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dinitrogen conversion to ammonia via electrochemical reduction with over 10% Faradaic efficiency is demonstrated in this work. Co-doped MoS2-x polycrystalline nanosheets with S vacancies as the catalysts are loaded onto carbon cloth by hydrothermal growth from Mo, Co, and S precursors. A sulfur vacancy on the MoS2-x basal plane mimicking the natural Mo-nitrogenase active site is modified by Co doping and exhibits superior dinitrogen-to-ammonia conversion activity. Density-functional simulation reveals that the free energy barrier, which can be compensated by applied overpotential, is reduced from 1.62 to 0.59 eV after Co doping. Meanwhile, dinitrogen tends to be chemically adsorbed to defective MoS2-x, which effectively activates the dinitrogen molecule for the dissociation of the N≡N triple bond. This process is further accelerated by Co doping, resulting from the modulation of Mo-N bonding configuration.

          Related collections

          Author and article information

          Journal
          Journal of the American Chemical Society
          J. Am. Chem. Soc.
          American Chemical Society (ACS)
          0002-7863
          1520-5126
          November 08 2019
          November 08 2019
          Article
          10.1021/jacs.9b02501
          31701745
          1aa547f2-9191-4d42-ac7e-fc828065eef7
          © 2019
          History

          Comments

          Comment on this article