24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Novel Group C Oncolytic Adenoviruses Carrying a miRNA Inhibitor Demonstrate Enhanced Oncolytic Activity In Vitro and In Vivo

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oncolytic adenoviruses (OAd) represent an attractive treatment option for cancer. Clinical efficacy of commonly utilized human adenovirus type 5 (Ad5)-based oncolytic viruses is limited by variable expression levels of the coxsackie- and adenovirus receptor (CAR) in tumor cells and high prevalence of neutralizing antibodies against human Ad5. However, previous studies have highlighted alternative human Ad types as promising candidates for oncolytic therapy. In this study, we generated novel OAds based on Ad1, -2, -5, and -6 derived from species C Ads. These OAds contain a 24-bp deletion in the early gene E1A for tumor selective replication and express the RNAi inhibitor P19. We examined these OAds for in vitro anticancer activity on various cancer cell lines derived from lung, colon, gynecologic, bone, and pancreatic carcinoma. In most surveyed cell lines, OAds based on Ad1, -2, and -6 demonstrated higher cell lysis capability compared with Ad5, suggesting enhanced oncolytic potential. Moreover, enhanced oncolytic activity was associated with P19 expression in a cell type–dependent manner. We further explored a A549 tumor xenograft mouse model to compare the novel OAds directly with Ad5 and H101, an oncolytic adenovirus used in clinical trials. These P19-containing OAds based on Ad1, -2, and -6 showed significantly decelerated tumor progression compared with H101, indicating better antitumor potency in vivo. Our studies provide a novel path for OAd development based on alternative Ad types with improved effectiveness by RNA interference suppression.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Reprogrammed viruses as cancer therapeutics: targeted, armed and shielded.

          Virotherapy is currently undergoing a renaissance, based on our improved understanding of virus biology and genetics and our better knowledge of many different types of cancer. Viruses can be reprogrammed into oncolytic vectors by combining three types of modification: targeting, arming and shielding. Targeting introduces multiple layers of cancer specificity and improves safety and efficacy; arming occurs through the expression of prodrug convertases and cytokines; and coating with polymers and the sequential usage of different envelopes or capsids provides shielding from the host immune response. Virus-based therapeutics are beginning to find their place in cancer clinical practice, in combination with chemotherapy and radiation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparative seroprevalence and immunogenicity of six rare serotype recombinant adenovirus vaccine vectors from subgroups B and D.

            Recombinant adenovirus serotype 5 (rAd5) vector-based vaccines are currently being developed for both human immunodeficiency virus type 1 and other pathogens. The potential limitations associated with rAd5 vectors, however, have led to the construction of novel rAd vectors derived from rare Ad serotypes. Several rare serotype rAd vectors have already been described, but a detailed comparison of multiple rAd vectors from subgroups B and D has not previously been reported. Such a comparison is critical for selecting optimal rAd vectors for advancement into clinical trials. Here we describe the construction of three novel rAd vector systems from Ad26, Ad48, and Ad50. We report comparative seroprevalence and immunogenicity studies involving rAd11, rAd35, and rAd50 vectors from subgroup B; rAd26, rAd48, and rAd49 vectors from subgroup D; and rAd5 vectors from subgroup C. All six rAd vectors from subgroups B and D exhibited low seroprevalence in a cohort of 200 individuals from sub-Saharan Africa, and they elicited Gag-specific cellular immune responses in mice both with and without preexisting anti-Ad5 immunity. The rAd vectors from subgroup D were also evaluated using rhesus monkeys and were shown to be immunogenic after a single injection. The rAd26 vectors proved the most immunogenic among the rare serotype rAd vectors studied, although all rare serotype rAd vectors were still less potent than rAd5 vectors in the absence of anti-Ad5 immunity. These studies substantially expand the portfolio of rare serotype rAd vectors that may prove useful as vaccine vectors for the developing world.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Improved seamless mutagenesis by recombineering using ccdB for counterselection

              Recombineering, which is the use of homologous recombination for DNA engineering in Escherichia coli, usually uses antibiotic selection to identify the intended recombinant. When combined in a second step with counterselection using a small molecule toxin, seamless products can be obtained. Here, we report the advantages of a genetic strategy using CcdB as the counterselectable agent. Expression of CcdB is toxic to E. coli in the absence of the CcdA antidote so counterselection is initiated by the removal of CcdA expression. CcdB counterselection is robust and does not require titrations or experiment-to-experiment optimization. Because counterselection strategies necessarily differ according to the copy number of the target, we describe two variations. For multi-copy targets, we use two E. coli hosts so that counterselection is exerted by the transformation step that is needed to separate the recombined and unrecombined plasmids. For single copy targets, we put the ccdA gene onto the temperature-sensitive pSC101 Red expression plasmid so that counterselection is exerted by the standard temperature shift to remove the expression plasmid. To reduce unwanted intramolecular recombination, we also combined CcdB counterselection with Redα omission. These options improve the use of counterselection in recombineering with BACs, plasmids and the E. coli chromosome.
                Bookmark

                Author and article information

                Journal
                Mol Cancer Ther
                Mol Cancer Ther
                Molecular Cancer Therapeutics
                American Association for Cancer Research
                1535-7163
                1538-8514
                01 March 2022
                04 March 2022
                : 21
                : 3
                : 460-470
                Affiliations
                [1 ]Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany.
                [2 ]Chair for Surgery II, Helios University Hospital Wuppertal, Department Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany.
                [3 ]Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington.
                Author notes
                [* ] Corresponding Author: Anja Ehrhardt, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Strasse 10, Witten 58453, Germany. Phone: +49 23902 926 273; Fax: +49 2302 926 44278; E-mail: anja.ehrhardt@ 123456uni-wh.de
                Author information
                https://orcid.org/0000-0002-0218-4777
                https://orcid.org/0000-0002-2324-3633
                https://orcid.org/0000-0001-8154-9860
                Article
                MCT-21-0240
                10.1158/1535-7163.MCT-21-0240
                9377726
                35027480
                1a9f5b44-e090-4a6c-a48a-4a372c9d90a9
                ©2022 The Authors; Published by the American Association for Cancer Research

                This open access article is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.

                History
                : 15 March 2021
                : 10 August 2021
                : 03 January 2022
                Page count
                Pages: 11
                Funding
                Funded by: DFG, DOI http://dx.doi.org/10.13039/100004807;
                Award ID: EH 192/5-3
                Funded by: Faculty of Health at Witten/Herdecke University, DOI ;
                Categories
                Models and Technologies

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content303

                Cited by6

                Most referenced authors206