16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      5-Azacytidine: A Promoter of Epigenetic Changes in the Quest to Improve Plant Somatic Embryogenesis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Somatic embryogenesis (SE) is a widely studied process due to its biotechnological potential to generate large quantities of plants in short time frames and from different sources of explants. The success of SE depends on many factors, such as the nature of the explant, the microenvironment generated by in vitro culture conditions, and the regulation of gene expression, among others. Epigenetics has recently been identified as an important factor influencing SE outcome. DNA methylation is one of the most studied epigenetic mechanisms due to its essential role in gene expression, and its participation in SE is crucial. DNA methylation levels can be modified through the use of drugs such as 5-Azacytidine (5-AzaC), an inhibitor of DNA methylation, which has been used during SE protocols. The balance between hypomethylation and hypermethylation seems to be the key to SE success. Here, we discuss the most prominent recent research on the role of 5-AzaC in the regulation of DNA methylation, highlighting its importance during the SE process. Also, the molecular implications that this inhibitor might have for the increase or decrease in the embryogenic potential of various explants are reviewed.

          Related collections

          Most cited references99

          • Record: found
          • Abstract: found
          • Article: not found

          Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning.

          Cytosine DNA methylation is important in regulating gene expression and in silencing transposons and other repetitive sequences. Recent genomic studies in Arabidopsis thaliana have revealed that many endogenous genes are methylated either within their promoters or within their transcribed regions, and that gene methylation is highly correlated with transcription levels. However, plants have different types of methylation controlled by different genetic pathways, and detailed information on the methylation status of each cytosine in any given genome is lacking. To this end, we generated a map at single-base-pair resolution of methylated cytosines for Arabidopsis, by combining bisulphite treatment of genomic DNA with ultra-high-throughput sequencing using the Illumina 1G Genome Analyser and Solexa sequencing technology. This approach, termed BS-Seq, unlike previous microarray-based methods, allows one to sensitively measure cytosine methylation on a genome-wide scale within specific sequence contexts. Here we describe methylation on previously inaccessible components of the genome and analyse the DNA methylation sequence composition and distribution. We also describe the effect of various DNA methylation mutants on genome-wide methylation patterns, and demonstrate that our newly developed library construction and computational methods can be applied to large genomes such as that of mouse.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation.

            Epigenetic silenced alleles of the Arabidopsis SUPERMAN locus (the clark kent alleles) are associated with dense hypermethylation at noncanonical cytosines (CpXpG and asymmetric sites, where X = A, T, C, or G). A genetic screen for suppressors of a hypermethylated clark kent mutant identified nine loss-of-function alleles of CHROMOMETHYLASE3 (CMT3), a novel cytosine methyltransferase homolog. These cmt3 mutants display a wild-type morphology but exhibit decreased CpXpG methylation of the SUP gene and of other sequences throughout the genome. They also show reactivated expression of endogenous retrotransposon sequences. These results show that a non-CpG DNA methyltransferase is responsible for maintaining epigenetic gene silencing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation and function of DNA methylation in plants and animals.

              DNA methylation is an important epigenetic mark involved in diverse biological processes. In plants, DNA methylation can be established through the RNA-directed DNA methylation pathway, an RNA interference pathway for transcriptional gene silencing (TGS), which requires 24-nt small interfering RNAs. In mammals, de novo DNA methylation occurs primarily at two developmental stages: during early embryogenesis and during gametogenesis. While it is not clear whether establishment of DNA methylation patterns in mammals involves RNA interference in general, de novo DNA methylation and suppression of transposons in germ cells require 24-32-nt piwi-interacting small RNAs. DNA methylation status is dynamically regulated by DNA methylation and demethylation reactions. In plants, active DNA demethylation relies on the repressor of silencing 1 family of bifunctional DNA glycosylases, which remove the 5-methylcytosine base and then cleave the DNA backbone at the abasic site, initiating a base excision repair (BER) pathway. In animals, multiple mechanisms of active DNA demethylation have been proposed, including a deaminase- and DNA glycosylase-initiated BER pathway. New information concerning the effects of various histone modifications on the establishment and maintenance of DNA methylation has broadened our understanding of the regulation of DNA methylation. The function of DNA methylation in plants and animals is also discussed in this review.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                16 October 2018
                October 2018
                : 19
                : 10
                : 3182
                Affiliations
                Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, 97205 Mérida, Yucatán, Mexico; jacket_147@ 123456hotmail.com (P.O.-M.); vyca@ 123456cicy.mx (L.S.-C.)
                Author notes
                [* ]Correspondence: clelia@ 123456cicy.mx ; Tel.: +52-999-942-8330
                Author information
                https://orcid.org/0000-0001-9448-6176
                https://orcid.org/0000-0002-9093-9489
                Article
                ijms-19-03182
                10.3390/ijms19103182
                6214027
                30332727
                1a9d218f-1584-49c9-9440-fe9ce8236a43
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 25 September 2018
                : 10 October 2018
                Categories
                Review

                Molecular biology
                somatic embryogenesis,dna methylation,5-azacytidine,epigenetics,hypomethylation,plant tissue culture,2,4-dichlorophenoxyacetic acid (2,4-d),in vitro

                Comments

                Comment on this article