15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Arrhenius-type domain growth in Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Single crystals of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) poled along [001] were investigated by dielectric, x-ray, and polarized light (PLM) and piezo-force microscopy (PFM) methods. PLM revealed {100} macro-domain plates that formed after poling, whose size increased on heating between room temperature and a rhombohedral \rightarrow tetragonal phase transition, above which point a break-up of the macro-domain plates was observed. Corresponding PFM studies demonstrated that poling reduced the size of stripe-like domains that were internal to the macro-domain plates, whose size also increased on heating to TR-T. The temperature dependence of both the size of the macro-domain plates and internal sub-domains followed the Arrhenius relation with the activation energy of 0.4-0.5eV. The coercive field displays an abnormal increase on heating below TR-T, different than that for PMN-PT. The anomalously increased coercive field can be ascribed to the Arrhenius-type domain growth, indicating a simple thermally activated process and an important role of hierarchial domains in the improved performance of PIN-PMN-PT.

          Related collections

          Author and article information

          Journal
          2011-12-14
          2013-04-23
          Article
          1112.3417
          4c41f81d-ab41-4655-9c9a-ed74854ae945

          http://creativecommons.org/licenses/by/3.0/

          History
          Custom metadata
          This paper has been withdrawn by the author due to the agreement from institute
          cond-mat.mtrl-sci cond-mat.other

          Condensed matter
          Condensed matter

          Comments

          Comment on this article