Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Role of microglia in sepsis-associated encephalopathy pathogenesis: an update

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sepsis-associated encephalopathy (SAE) is a serious complication of sepsis, which is characterized by cognitive dysfunction, a poor prognosis, and high incidences of morbidity and mortality. Substantial levels of systemic inflammatory factors induce neuroinflammatory responses during sepsis, ultimately disrupting the central nervous system's (CNS) homeostasis. This disruption results in brain dysfunction through various underlying mechanisms, contributing further to SAE’s development. Microglia, the most important macrophage in the CNS, can induce neuroinflammatory responses, brain tissue injury, and neuronal dysregulation, resulting in brain dysfunction. They serve an important regulatory role in CNS homeostasis and can be activated through multiple pathways. Consequently, activated microglia are involved in several pathogenic mechanisms related to SAE and play a crucial role in its development. This article discusses the role of microglia in neuroinflammation, dysfunction of neurotransmitters, disruption of the blood-brain barrier (BBB), abnormal control of cerebral blood flow, mitochondrial dysfunction, and reduction in the number of good bacteria in the gut as main pathogenic mechanisms of SAE, and focuses on studies targeting microglia to ameliorate SAE to provide a theoretical basis for targeted microglial therapy for SAE.

          Related collections

          Most cited references137

          • Record: found
          • Abstract: found
          • Article: not found

          Macrophage biology in development, homeostasis and disease.

          Macrophages, the most plastic cells of the haematopoietic system, are found in all tissues and show great functional diversity. They have roles in development, homeostasis, tissue repair and immunity. Although tissue macrophages are anatomically distinct from one another, and have different transcriptional profiles and functional capabilities, they are all required for the maintenance of homeostasis. However, these reparative and homeostatic functions can be subverted by chronic insults, resulting in a causal association of macrophages with disease states. In this Review, we discuss how macrophages regulate normal physiology and development, and provide several examples of their pathophysiological roles in disease. We define the 'hallmarks' of macrophages according to the states that they adopt during the performance of their various roles, taking into account new insights into the diversity of their lineages, identities and regulation. It is essential to understand this diversity because macrophages have emerged as important therapeutic targets in many human diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The blood-brain barrier.

            Blood vessels are critical to deliver oxygen and nutrients to all of the tissues and organs throughout the body. The blood vessels that vascularize the central nervous system (CNS) possess unique properties, termed the blood-brain barrier, which allow these vessels to tightly regulate the movement of ions, molecules, and cells between the blood and the brain. This precise control of CNS homeostasis allows for proper neuronal function and also protects the neural tissue from toxins and pathogens, and alterations of these barrier properties are an important component of pathology and progression of different neurological diseases. The physiological barrier is coordinated by a series of physical, transport, and metabolic properties possessed by the endothelial cells (ECs) that form the walls of the blood vessels, and these properties are regulated by interactions with different vascular, immune, and neural cells. Understanding how these different cell populations interact to regulate the barrier properties is essential for understanding how the brain functions during health and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microglia and macrophages in brain homeostasis and disease

              Microglia and non-parenchymal macrophages in the brain are mononuclear phagocytes that are increasingly recognized to be essential players in the development, homeostasis and diseases of the central nervous system. With the availability of new genetic, molecular and pharmacological tools, considerable advances have been made towards our understanding of the embryonic origins, developmental programmes and functions of these cells. These exciting discoveries, some of which are still controversial, also raise many new questions, which makes brain macrophage biology a fast-growing field at the intersection of neuroscience and immunology. Here, we review the current knowledge of how and where brain macrophages are generated, with a focus on parenchymal microglia. We also discuss their normal functions during development and homeostasis, the disturbance of which may lead to various neurodegenerative and neuropsychiatric diseases.
                Bookmark

                Author and article information

                Journal
                Shock
                Shock
                Ovid Technologies (Wolters Kluwer Health)
                1073-2322
                December 19 2023
                Affiliations
                [1 ]Department of Critical Care Medicine, Chifeng Municipal Hospital, Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng 024000, China
                [2 ]Department of Central Laboratory, Chifeng Municipal Hospital, Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng 024000, China
                [3 ]Chifeng Clinical Medical College of Inner Mongolia Medical University, Hohhot 010110, China
                Article
                10.1097/SHK.0000000000002296
                38150368
                1a938c11-55e3-45a3-a989-04f9e8e04e89
                © 2023
                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content295

                Cited by3

                Most referenced authors2,770