30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multi-omics Analysis of Periodontal Pocket Microbial Communities Pre- and Posttreatment

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Periodontal disease affects the majority of adults worldwide and has been linked to numerous systemic diseases. Despite decades of research, the reasons for the substantial differences among periodontitis patients in disease incidence, progressivity, and response to treatment remain poorly understood. While deep sequencing of oral bacterial communities has greatly expanded our comprehension of the microbial diversity of periodontal disease and identified associations with healthy and disease states, predicting treatment outcomes remains elusive. Our results suggest that combining multiple omics approaches enhances the ability to differentiate among disease states and determine differential effects of treatment, particularly with the addition of metabolomic information. Furthermore, multi-omics analysis of biofilm community instability indicated that these approaches provide new tools for investigating the ecological dynamics underlying the progressive periodontal disease process.

          ABSTRACT

          Periodontitis is a polymicrobial infectious disease that causes breakdown of the periodontal ligament and alveolar bone. We employed a meta-omics approach that included microbial 16S rRNA amplicon sequencing, shotgun metagenomics, and tandem mass spectrometry to analyze sub- and supragingival biofilms in adults with chronic periodontitis pre- and posttreatment with 0.25% sodium hypochlorite. Microbial samples were collected with periodontal curettes from 3- to 12-mm-deep periodontal pockets at the baseline and at 2 weeks and 3 months. All data types showed high interpersonal variability, and there was a significant correlation between phylogenetic diversity and pocket depth at the baseline and a strong correlation (rho = 0.21; P = 0.008) between metabolite diversity and maximum pocket depth (MPD). Analysis of subgingival baseline samples (16S rRNA and shotgun metagenomics) found positive correlations between abundances of particular bacterial genera and MPD, including Porphyromonas, Treponema, Tannerella, and Desulfovibrio species and unknown taxon SHD-231. At 2 weeks posttreatment, we observed an almost complete turnover in the bacterial genera (16S rRNA) and species (shotgun metagenomics) correlated with MPD. Among the metabolites detected, the medians of the 20 most abundant metabolites were significantly correlated with MPD pre- and posttreatment. Finally, tests of periodontal biofilm community instability found markedly higher taxonomic instability in patients who did not improve posttreatment than in patients who did improve (UniFrac distances; t = −3.59; P = 0.002). Interestingly, the opposite pattern occurred in the metabolic profiles (Bray-Curtis; t = 2.42; P = 0.02). Our results suggested that multi-omics approaches, and metabolomics analysis in particular, could enhance treatment prediction and reveal patients most likely to improve posttreatment.

          IMPORTANCE Periodontal disease affects the majority of adults worldwide and has been linked to numerous systemic diseases. Despite decades of research, the reasons for the substantial differences among periodontitis patients in disease incidence, progressivity, and response to treatment remain poorly understood. While deep sequencing of oral bacterial communities has greatly expanded our comprehension of the microbial diversity of periodontal disease and identified associations with healthy and disease states, predicting treatment outcomes remains elusive. Our results suggest that combining multiple omics approaches enhances the ability to differentiate among disease states and determine differential effects of treatment, particularly with the addition of metabolomic information. Furthermore, multi-omics analysis of biofilm community instability indicated that these approaches provide new tools for investigating the ecological dynamics underlying the progressive periodontal disease process.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          UniRef: comprehensive and non-redundant UniProt reference clusters.

          Redundant protein sequences in biological databases hinder sequence similarity searches and make interpretation of search results difficult. Clustering of protein sequence space based on sequence similarity helps organize all sequences into manageable datasets and reduces sampling bias and overrepresentation of sequences. The UniRef (UniProt Reference Clusters) provide clustered sets of sequences from the UniProt Knowledgebase (UniProtKB) and selected UniProt Archive records to obtain complete coverage of sequence space at several resolutions while hiding redundant sequences. Currently covering >4 million source sequences, the UniRef100 database combines identical sequences and subfragments from any source organism into a single UniRef entry. UniRef90 and UniRef50 are built by clustering UniRef100 sequences at the 90 or 50% sequence identity levels. UniRef100, UniRef90 and UniRef50 yield a database size reduction of approximately 10, 40 and 70%, respectively, from the source sequence set. The reduced redundancy increases the speed of similarity searches and improves detection of distant relationships. UniRef entries contain summary cluster and membership information, including the sequence of a representative protein, member count and common taxonomy of the cluster, the accession numbers of all the merged entries and links to rich functional annotation in UniProtKB to facilitate biological discovery. UniRef has already been applied to broad research areas ranging from genome annotation to proteomics data analysis. UniRef is updated biweekly and is available for online search and retrieval at http://www.uniprot.org, as well as for download at ftp://ftp.uniprot.org/pub/databases/uniprot/uniref. Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Periodontitis: a polymicrobial disruption of host homeostasis.

            Periodontitis, or gum disease, affects millions of people each year. Although it is associated with a defined microbial composition found on the surface of the tooth and tooth root, the contribution of bacteria to disease progression is poorly understood. Commensal bacteria probably induce a protective response that prevents the host from developing disease. However, several bacterial species found in plaque (the 'red-complex' bacteria: Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola) use various mechanisms to interfere with host defence mechanisms. Furthermore, disease may result from 'community-based' attack on the host. Here, I describe the interaction of the host immune system with the oral bacteria in healthy states and in diseased states.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cross-biome metagenomic analyses of soil microbial communities and their functional attributes.

              For centuries ecologists have studied how the diversity and functional traits of plant and animal communities vary across biomes. In contrast, we have only just begun exploring similar questions for soil microbial communities despite soil microbes being the dominant engines of biogeochemical cycles and a major pool of living biomass in terrestrial ecosystems. We used metagenomic sequencing to compare the composition and functional attributes of 16 soil microbial communities collected from cold deserts, hot deserts, forests, grasslands, and tundra. Those communities found in plant-free cold desert soils typically had the lowest levels of functional diversity (diversity of protein-coding gene categories) and the lowest levels of phylogenetic and taxonomic diversity. Across all soils, functional beta diversity was strongly correlated with taxonomic and phylogenetic beta diversity; the desert microbial communities were clearly distinct from the nondesert communities regardless of the metric used. The desert communities had higher relative abundances of genes associated with osmoregulation and dormancy, but lower relative abundances of genes associated with nutrient cycling and the catabolism of plant-derived organic compounds. Antibiotic resistance genes were consistently threefold less abundant in the desert soils than in the nondesert soils, suggesting that abiotic conditions, not competitive interactions, are more important in shaping the desert microbial communities. As the most comprehensive survey of soil taxonomic, phylogenetic, and functional diversity to date, this study demonstrates that metagenomic approaches can be used to build a predictive understanding of how microbial diversity and function vary across terrestrial biomes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                mSystems
                mSystems
                msys
                msys
                mSystems
                mSystems
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2379-5077
                20 June 2017
                May-Jun 2017
                : 2
                : 3
                : e00016-17
                Affiliations
                [a ]Center for Microbial Genetics and Genomics and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
                [b ]Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, USA
                [c ]Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
                [d ]Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
                [e ]Department of Pediatrics, University of California, San Diego, San Diego, California, USA
                [f ]Department of Biology, San Diego State University, San Diego, California, USA
                University of Trento
                Author notes
                Address correspondence to Scott T. Kelley, skelley@ 123456mail.sdsu.edu .

                K.J.C. and K.S.-L. contributed equally to this study.

                Citation Califf KJ, Schwarzberg-Lipson K, Garg N, Gibbons SM, Caporaso JG, Slots J, Cohen C, Dorrestein PC, Kelley ST. 2017. Multi-omics analysis of periodontal pocket microbial communities pre- and posttreatment. mSystems 2:e00016-17. https://doi.org/10.1128/mSystems.00016-17.

                Author information
                http://orcid.org/0000-0002-8865-1670
                http://orcid.org/0000-0001-9547-4169
                Article
                mSystems00016-17
                10.1128/mSystems.00016-17
                5513737
                28744486
                1a791cb7-3820-465b-804d-5f4cc7166cb7
                Copyright © 2017 Califf et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 28 February 2017
                : 20 March 2017
                Page count
                supplementary-material: 7, Figures: 3, Tables: 3, Equations: 0, References: 46, Pages: 14, Words: 9136
                Funding
                Funded by: Clorox Corporation
                Award Recipient : Scott T. Kelley
                Funded by: HHS | National Institutes of Health (NIH) https://doi.org/10.13039/100000002
                Award ID: U01-HG004866-02
                Award Recipient : Scott T. Kelley
                Funded by: University of Arizona (UA) https://doi.org/10.13039/100007899
                Award ID: Technology and Research Initiation Fund
                Award Recipient : J. Gregory Caporaso
                Categories
                Research Article
                Host-Microbe Biology
                Editor's Pick
                Custom metadata
                May/June 2017

                16s rrna,diagnostics,metabolome,microbiome,molecular networking,periodontal disease,periodontitis,shotgun metagenomics

                Comments

                Comment on this article