35
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Trend in global burden attributable to low bone mineral density in different WHO regions: 2000 and beyond, results from the Global Burden of Disease (GBD) study 2019

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          We aimed to document the current state of exposure to low bone mineral density (BMD) and trends in attributable burdens between 2000 and 2019 globally and in different World Health Organization (WHO) regions using the Global Burden of Disease (GBD) study 2019.

          Methods

          We reviewed the sex-region-specific summary exposure value (SEV) of low BMD and the all-ages numbers and age-standardized rates of disability-adjusted life years (DALYs), years lived with disability (YLDs), years of life lost (YLLs), and deaths attributed to low BMD. We compared different WHO regions (Africa, the Eastern Mediterranean Region, Europe, Region of the Americas, Southeast Asia, and Western Pacific), age categories, and sexes according to the estimates of the GBD 2019 report.

          Results

          The global age-standardized SEV of low BMD is estimated to be 20.7% in women and 11.3% in men in 2019. Among the WHO regions, Africa had the highest age-standardized SEV of low BMD in women (28.8% (95% uncertainty interval 22.0–36.3)) and men (16.8% (11.5–23.8)). The lowest SEV was observed in Europe in both women (14.7% (9.9–21.0)) and men (8.0% (4.3–13.4)). An improving trend in the global rate of DALY, death, and YLL was observed during 2000–2019 (−5.7%, −4.7%, and −11.9% change, respectively); however, the absolute numbers increased with the highest increase observed in global YLD (70.9%) and death numbers (67.6%). Southeast Asia Region had the highest age-standardized rates of DALY (303.4 (249.2–357.2)), death (10.6 (8.5–12.3)), YLD (133.5 (96.9–177.3)), and YLL (170.0 (139–197.7)).

          Conclusions

          Overall, the highest-burden attributed to low BMD was observed in the Southeast Asia Region. Knowledge of the SEV of low BMD and the attributed burden can increase the awareness of healthcare decision-makers to adopt appropriate strategies for early screening, and also strategies to prevent falls and fragility fractures and their consequent morbidity and mortality.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Clinician’s Guide to Prevention and Treatment of Osteoporosis

          The Clinician’s Guide to Prevention and Treatment of Osteoporosis was developed by an expert committee of the National Osteoporosis Foundation (NOF) in collaboration with a multispecialty council of medical experts in the field of bone health convened by NOF. Readers are urged to consult current prescribing information on any drug, device, or procedure discussed in this publication.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Predictive value of BMD for hip and other fractures.

            The relationship between BMD and fracture risk was estimated in a meta-analysis of data from 12 cohort studies of approximately 39,000 men and women. Low hip BMD was an important predictor of fracture risk. The prediction of hip fracture with hip BMD also depended on age and z score. The aim of this study was to quantify the relationship between BMD and fracture risk and examine the effect of age, sex, time since measurement, and initial BMD value. We studied 9891 men and 29,082 women from 12 cohorts comprising EVOS/EPOS, EPIDOS, OFELY, CaMos, Rochester, Sheffield, Rotterdam, Kuopio, DOES, Hiroshima, and 2 cohorts from Gothenburg. Cohorts were followed for up to 16.3 years and a total of 168,366 person-years. The effect of BMD on fracture risk was examined using a Poisson model in each cohort and each sex separately. Results of the different studies were then merged using weighted coefficients. BMD measurement at the femoral neck with DXA was a strong predictor of hip fractures both in men and women with a similar predictive ability. At the age of 65 years, risk ratio increased by 2.94 (95% CI = 2.02-4.27) in men and by 2.88 (95% CI = 2.31-3.59) in women for each SD decrease in BMD. However, the effect was dependent on age, with a significantly higher gradient of risk at age 50 years than at age 80 years. Although the gradient of hip fracture risk decreased with age, the absolute risk still rose markedly with age. For any fracture and for any osteoporotic fracture, the gradient of risk was lower than for hip fractures. At the age of 65 years, the risk of osteoporotic fractures increased in men by 1.41 per SD decrease in BMD (95% CI = 1.33-1.51) and in women by 1.38 per SD (95% CI = 1.28-1.48). In contrast with hip fracture risk, the gradient of risk increased with age. For the prediction of any osteoporotic fracture (and any fracture), there was a higher gradient of risk the lower the BMD. At a z score of -4 SD, the risk gradient was 2.10 per SD (95% CI = 1.63-2.71) and at a z score of -1 SD, the risk was 1.73 per SD (95% CI = 1.59-1.89) in men and women combined. A similar but less pronounced and nonsignificant effect was observed for hip fractures. Data for ultrasound and peripheral measurements were available from three cohorts. The predictive ability of these devices was somewhat less than that of DXA measurements at the femoral neck by age, sex, and BMD value. We conclude that BMD is a risk factor for fracture of substantial importance and is similar in both sexes. Its validation on an international basis permits its use in case finding strategies. Its use should, however, take account of the variations in predictive value with age and BMD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Postmenopausal osteoporosis.

              Osteoporosis is a metabolic bone disorder that is characterized by low bone mass and micro-architectural deterioration of bone tissue. Fractures of the proximal femur, the vertebrae and the distal radius are the most frequent osteoporotic fractures, although most fractures in the elderly are probably at least partly related to bone fragility. The incidence of fractures varies greatly by country, but on average up to 50% of women >50 years of age are at risk of fractures. Fractures severely affect the quality of life of an individual and are becoming a major public health problem owing to the ageing population. Postmenopausal osteoporosis, resulting from oestrogen deficiency, is the most common type of osteoporosis. Oestrogen deficiency results in an increase in bone turnover owing to effects on all types of bone cells. The imbalance in bone formation and resorption has effects on trabecular bone (loss of connectivity) and cortical bone (cortical thinning and porosity). Osteoporosis is diagnosed using bone density measurements of the lumbar spine and proximal femur. Preventive strategies to improve bone health include diet, exercise and abstaining from smoking. Fractures may be prevented by reducing falls in high-risk populations. Several drugs are licensed to reduce fracture risk by slowing down bone resorption (such as bisphosphonates and denosumab) or by stimulating bone formation (such as teriparatide). Improved understanding of the cellular basis for osteoporosis has resulted in new drugs targeted to key pathways, which are under development.
                Bookmark

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                14 September 2023
                14 August 2023
                01 October 2023
                : 12
                : 10
                : e230160
                Affiliations
                [1 ]Metabolic Disorders Research Center , Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
                [2 ]Osteoporosis Research Center , Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
                [3 ]Non-Communicable Diseases Research Center , Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
                [4 ]Kiel Institute for the World Economy , Kiel, Germany
                [5 ]Department of Epidemiology and Biostatistics , School of Public Health, Tehran University of Medical Science, Tehran, Iran
                [6 ]Endocrinology and Metabolism Research Center , Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
                Author notes
                Correspondence should be addressed to N Fahimfar or A Ostovar: nfahimfar@ 123456gmail.com or aostovar@ 123456sina.tums.ac.ir
                Author information
                http://orcid.org/0000-0003-2184-7043
                http://orcid.org/0000-0001-6205-9794
                http://orcid.org/0000-0001-8670-5797
                Article
                EC-23-0160
                10.1530/EC-23-0160
                10503222
                37578756
                1a62bcc8-d872-496e-a5e7-5e139deaf454
                © the author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 25 April 2023
                : 14 September 2023
                Categories
                Research

                low bmd,osteoporosis,gbd,burden,daly
                low bmd, osteoporosis, gbd, burden, daly

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content134

                Cited by5

                Most referenced authors399