37
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plant virus metagenomics: what we know and why we need to know more

      editorial

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction In the past decade the concept of plant viruses as strictly disease-causing entities has been challenged. While the most well-studied and obvious interactions between plants and viruses are related to disease, there are several examples of mutualistic relationships between plants and viruses, both indirect and direct. These mutualistic interactions have not been fully explored, and many questions remain unanswered. One problem is the lack of knowledge of plant viruses in nature. Metagenomic surveys have estimated that only a small fraction of virus species are known. Additionally, globalization has led to the increased movement of plant material and virus movement. As viruses move from one area to another, new potential hosts offer the possibility of new interactions, both negative and positive. Beneficial plant-virus interactions Viruses have been associated with plant disease since they were first described in 1898 (Beijerinck, 1898), but in recent years viruses with positive impacts on the plant hosts they are associated with also have been described. Negative interactions are mostly studied as disease symptoms such as stunting or necrosis, and the vast majority of virus research has focused on the disease aspect of these interactions. Beneficial interactions involve environmental protection to the host plant, protection against other pathogens, or control of plant responses to nutritional needs (reviewed in Roossinck, 2011). Plant viruses confer drought and cold tolerance to plants as conditional mutualists: the plant is harmed by the viruses under normal conditions, but benefited under extreme conditions. This was demonstrated for several different viruses and plant hosts (Xu et al., 2008). Mild strains of plant viruses protect plants from more severe isolates, a phenomenon known as cross-protection (Fraser, 1998) that led to the initial generation of virus-induced pathogen protection in transgenic plants. Endogenous pararetroviral elements in plants can confer resistance to exogenous viruses (Staginnus et al., 2007). The coat protein gene of a persistent virus in white clover affects the development of nodules under varying nitrogen levels, and this could be transferred to other legumes (Nakatsukasa-Akune et al., 2005). Curvularia thermal tolerance virus is a mycovirus that infects a plant fungal endophyte, Curvularia protuberata. When both virus and fungus are present in hot springs panic grass (Dichanthelium lanuginosum) the holobiont is able to grow in soil temperatures up to 65°C (Márquez et al., 2007). Many more examples of mutualistic viruses can be found in other hosts (Roossinck, 2011). In addition, viruses are important in population control of their hosts, and marine viruses are probably extremely important to the movement of carbon and trace elements in the microbiome of the oceans (Danovaro et al., 2011). Plant virus ecology and evolution The existence of plant-virus mutualistic relationships should not be surprising when one considers the numerous examples of mutualistic relationships between plants or animals and other microbes. Despite examples, there has been very little focus on exploring mutualistic relationships among plants and viruses. Viruses are also involved in the complex interactions between plants and insects, and can alter insect feeding behavior, fecundity, and ability to invade new territory (reviewed in Roossinck, 2013). Further complicating our understanding of plant-virus interactions is the role globalization has on the relationships between viruses and their plant hosts. Viruses are not stationary, and their movement geographically and between host species can have drastic effects on the ecology of a given area. Climate change can alter the behavior of many virus vectors, promoting the spread of viral distribution across a larger geographic area (Lebouvier et al., 2011). A prime example of the impact of viruses on plant species balance is the well-studied beneficial effect the luteoviruses Barley yellow dwarf virus and Cereal yellow dwarf virus had on the invasive annual grasses in California grasslands (Malmstrom et al., 2005). Using the estimation that over 20,000 microbes have invaded the United States (Pimentel et al., 2005) as a measure of virus movement worldwide, it is reasonable to suggest that this significant movement of viruses gives the opportunity of a virus jumping from one plant host species to another, which in turn leads to new plant-virus interactions. Metagenomic surveys can be useful for nations who are interested in protecting their crops against invasive diseases (MacDiarmid et al., 2013). A working knowledge of the geographic location, host range, and potential effects of plant viruses can assist such nations in developing effective policies that distinguish those viruses that will have negative economic impacts from viruses which are benign or even beneficial. Viruses impact the evolution of plants at many levels, and plants clearly affect the populations of viruses that infect them. There are examples of specific interactions between plants and viruses, such as the silencing suppression genes found in many RNA viruses. While not as prevalent as in animals or bacteria, there have been instances of horizontal gene exchange from viruses to plants. Repeat sequences of geminiviruses have been found in Nicotiana spp. (Bejarano et al., 1996; Ashby et al., 1997), and pararetroviruses are frequently found integrated into plants (Hohn et al., 2008). Sequences from cytoplasmic RNA viruses are found in plant genomes (Liu et al., 2010; Chiba et al., 2011). There is also evidence that Closterovirus genes have integrated into the mitochondria of grapevines, Vitis vinifera (Goremykin et al., 2009). Viruses have been said to be responsible for a large amount of genetic flow in several different systems (Bock, 2010; Liu et al., 2010; Wu and Zhang, 2011). This in turn would increase the genetic plasticity of the hosts offering the opportunity for novel interactions to take place. We don't know what is out there In the past decade there have been a few metagenomic type surveys exploring plant virus biodiversity in wild plants, insects, and a few other environments (Wren et al., 2006; Roossinck et al., 2010; Ng et al., 2011; Roossinck, 2012). Some of these studies have used a more ecological approach, “ecogenomics,” that looks at the viral populations in individuals rather than in the entire environment that is typical of metagnomic studies (Roossinck et al., 2010). The most surprising result is that we know very little of the size and diversity of plant virus families. These surveys have revealed that the true diversity of virus species is much larger than earlier estimates, with the discovery of new virus isolates, species, families, and even higher level virus groups (Labonté and Suttle, 2013). An additional surprising result is that viruses in wild plants do not cause any visible symptoms. With the knowledge of how little we know of the biodiversity of viruses, new techniques, methods, and questions need to be developed in order to detect and identify these new viruses. In addition, the full extent of plant-virus interactions cannot be fully studied until we have a better understanding of the ecology of plant viruses. While the metagenomic surveys are a start, there are still many challenges ahead. The viruses found using metagenomic sequencing data can be described in three different ways: (1) Known-knowns: virus species or isolates that are already known to be in the environment being surveyed; (2) Unknown-knowns: new virus species or isolates of a known family, or known viruses that have not been found previously in the surveyed environment and; (3) Unknown-unknowns: viruses that are completely novel and share little to no sequence similarity with other known viruses. Sequencing data for each instance can be analyzed differently based on the questions being addressed. The removal of non-viral sequences from the sample either before or after sequencing will, of course, increase the chances of identifying viruses within a metagenomic sequence dataset, so care should be taken in both sample preparation before sequencing and manipulation of sequence data after sequencing. Methods to enrich for plant viral-specific sequences include isolation of virus-like particles (Muthukumar et al., 2009), enrichment for double-stranded RNA (Roossinck et al., 2010), and the use of siRNAs (Kreuze et al., 2009). All of these methods have strengths and weaknesses, but the use of double-stranded RNA has given the deepest analyses so far. For known-knowns and unknown-knowns, screening of the sequence dataset for the presence of known viruses can drastically reduce the amount of time needed for analysis and as such detection and identification of viruses (Stobbe et al., 2013). The large amount of sequencing data that shares little or no nucleotide similarity with known sequences in curated databases such as GenBank suggests that there are still many unknown microbes that have yet to be described, with unknown-unknown viruses likely to be prevalent among them. These unknown sequences continue to be difficult to identify and will require new and novel methods to assign to a taxon. There have been significant efforts to describe these unknown-unknowns in different environments, with new analysis methods tailored for virus discovery either by sequence similarity or by clustering genes (Williamson et al., 2008; Kristensen et al., 2010; Wu et al., 2010; Ames et al., 2013; Labonté and Suttle, 2013). Protein sequences expressed by viral-specific genes, such as the RNA dependent RNA polymerase (RdRp), can be used to detect both unknown-knowns and unknown-unknowns (Kristensen et al., 2010). Unknown-unknown viruses share little or no sequence similarity with known viruses, so quality de novo assembly is essential as genome mapping or BLAST assisted assembly is not an option. Assembly programs tailored for virus de novo assembly have been created, and modifications to assembly processes have been used to generate fully assembled genomes of extremely low titer microbes (Albertsen et al., 2013). Additionally, new exciting sequencing platforms, such as the Oxford Nanopore, offer the ability to sequence an entire viral genome in a single read (Schneider and Dekker, 2012). This ability removes the need for assembly altogether. However, even with a perfectly assembled genome, the need to identify the genome is still there. By clustering the unknown sequences, the biodiversity of a given environment can be estimated, and this has led to the discovery of new families of single stranded DNA viruses (Labonté and Suttle, 2013). Conclusions There is still much to be discovered on the topic of plant-microbe interactions, and of plant-virus interactions in particular. Metagenomics offers us a unique tool to elucidate the current state of viruses in plants and the role viruses play in these interactions. When these studies are done on individual plant samples rather than pooled samples from a larger environment, a system known as “ecogenomics” (Roossinck et al., 2010), they provide meaningful data for deeper ecological analyses of the distribution of viruses and potential host- or environmental-specific interactions. Conflict of interest statement The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance.

          A mutualistic association between a fungal endophyte and a tropical panic grass allows both organisms to grow at high soil temperatures. We characterized a virus from this fungus that is involved in the mutualistic interaction. Fungal isolates cured of the virus are unable to confer heat tolerance, but heat tolerance is restored after the virus is reintroduced. The virus-infected fungus confers heat tolerance not only to its native monocot host but also to a eudicot host, which suggests that the underlying mechanism involves pathways conserved between these two groups of plants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses.

            We report the first identification of novel viruses, and sequence of an entire viral genome, by a single step of high-throughput parallel sequencing of small RNAs from diseased, as well as symptomless plants. Contigs were assembled from sequenced total siRNA from plants using small sequence assembly software and could positively identify RNA, ssDNA and dsDNA reverse transcribing viruses and in one case spanned the entire genome. The results present a novel approach which cannot only identify known viral pathogens, occurring at extremely low titers, but also novel viruses, without the necessity of any prior knowledge.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Marine viruses and global climate change.

              Sea-surface warming, sea-ice melting and related freshening, changes in circulation and mixing regimes, and ocean acidification induced by the present climate changes are modifying marine ecosystem structure and function and have the potential to alter the cycling of carbon and nutrients in surface oceans. Changing climate has direct and indirect consequences on marine viruses, including cascading effects on biogeochemical cycles, food webs, and the metabolic balance of the ocean. We discuss here a range of case studies of climate change and the potential consequences on virus function, viral assemblages and virus-host interactions. In turn, marine viruses influence directly and indirectly biogeochemical cycles, carbon sequestration capacity of the oceans and the gas exchange between the ocean surface and the atmosphere. We cannot yet predict whether the viruses will exacerbate or attenuate the magnitude of climate changes on marine ecosystems, but we provide evidence that marine viruses interact actively with the present climate change and are a key biotic component that is able to influence the oceans' feedback on climate change. Long-term and wide spatial-scale studies, and improved knowledge of host-virus dynamics in the world's oceans will permit the incorporation of the viral component into future ocean climate models and increase the accuracy of the predictions of the climate change impacts on the function of the oceans. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                05 March 2014
                16 April 2014
                2014
                : 5
                : 150
                Affiliations
                [1] 1Department of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, Pennsylvania State University University Park, PA, USA
                [2] 2State Agricultural Biotechnology Centre, Murdoch University Perth, WA, Australia
                Author notes
                *Correspondence: mjr25@ 123456psu.edu

                This article was submitted to Plant Genetics and Genomics, a section of the journal Frontiers in Plant Science.

                Edited by: Jeff H. Chang, Oregon State University, USA

                Reviewed by: Ming-Bo Wang, Commonwealth Scientific and Industrial Research Organisation, Australia; Johan Burger, Stellenbosch University, South Africa

                Article
                10.3389/fpls.2014.00150
                3997031
                24795737
                1a23f7c6-fad9-46f8-a787-da07a2d8b40c
                Copyright © 2014 Stobbe and Roossinck.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 February 2014
                : 29 March 2014
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 35, Pages: 4, Words: 3063
                Categories
                Plant Science
                Opinion Article

                Plant science & Botany
                ecogenomics,virus ecology,wild plant viruses,virus biodiversity,bioinformatics

                Comments

                Comment on this article