12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aetiology and incidence of diarrhoea requiring hospitalisation in children under 5 years of age in 28 low-income and middle-income countries: findings from the Global Pediatric Diarrhea Surveillance network

      research-article
      1 , 2 , , 3 , 2 , 3 , 4 , 4 , 5 , 5 , 5 , 6 , 6 , 6 , 7 , 7 , 8 , 8 , 8 , 9 , 9 , 10 , 10 , 10 , 11 , 11 , 11 , 12 , 12 , 13 , 13 , 14 , 14 , 15 , 14 , 16 , 16 , 17 , 18 , 18 , 19 , 2 , 2 , 20 , 2 , 12 , 12 , 3
      BMJ Global Health
      BMJ Publishing Group
      public health, epidemiology, infections, diseases, disorders, injuries, PCR, child health

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Diarrhoea remains a leading cause of child morbidity and mortality. Systematically collected and analysed data on the aetiology of hospitalised diarrhoea in low-income and middle-income countries are needed to prioritise interventions.

          Methods

          We established the Global Pediatric Diarrhea Surveillance network, in which children under 5 years hospitalised with diarrhoea were enrolled at 33 sentinel surveillance hospitals in 28 low-income and middle-income countries. Randomly selected stool specimens were tested by quantitative PCR for 16 causes of diarrhoea. We estimated pathogen-specific attributable burdens of diarrhoeal hospitalisations and deaths. We incorporated country-level incidence to estimate the number of pathogen-specific deaths on a global scale.

          Results

          During 2017–2018, 29 502 diarrhoea hospitalisations were enrolled, of which 5465 were randomly selected and tested. Rotavirus was the leading cause of diarrhoea requiring hospitalisation (attributable fraction (AF) 33.3%; 95% CI 27.7 to 40.3), followed by Shigella (9.7%; 95% CI 7.7 to 11.6), norovirus (6.5%; 95% CI 5.4 to 7.6) and adenovirus 40/41 (5.5%; 95% CI 4.4 to 6.7). Rotavirus was the leading cause of hospitalised diarrhoea in all regions except the Americas, where the leading aetiologies were Shigella (19.2%; 95% CI 11.4 to 28.1) and norovirus (22.2%; 95% CI 17.5 to 27.9) in Central and South America, respectively. The proportion of hospitalisations attributable to rotavirus was approximately 50% lower in sites that had introduced rotavirus vaccine (AF 20.8%; 95% CI 18.0 to 24.1) compared with sites that had not (42.1%; 95% CI 33.2 to 53.4). Globally, we estimated 208 009 annual rotavirus-attributable deaths (95% CI 169 561 to 259 216), 62 853 Shigella-attributable deaths (95% CI 48 656 to 78 805), 36 922 adenovirus 40/41-attributable deaths (95% CI 28 469 to 46 672) and 35 914 norovirus-attributable deaths (95% CI 27 258 to 46 516).

          Conclusions

          Despite the substantial impact of rotavirus vaccine introduction, rotavirus remained the leading cause of paediatric diarrhoea hospitalisations. Improving the efficacy and coverage of rotavirus vaccination and prioritising interventions against Shigella, norovirus and adenovirus could further reduce diarrhoea morbidity and mortality.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

          Summary Background In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and development investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding Bill & Melinda Gates Foundation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019

            Summary Background Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Funding Bill & Melinda Gates Foundation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study.

              Diarrhoeal diseases cause illness and death among children younger than 5 years in low-income countries. We designed the Global Enteric Multicenter Study (GEMS) to identify the aetiology and population-based burden of paediatric diarrhoeal disease in sub-Saharan Africa and south Asia. The GEMS is a 3-year, prospective, age-stratified, matched case-control study of moderate-to-severe diarrhoea in children aged 0-59 months residing in censused populations at four sites in Africa and three in Asia. We recruited children with moderate-to-severe diarrhoea seeking care at health centres along with one to three randomly selected matched community control children without diarrhoea. From patients with moderate-to-severe diarrhoea and controls, we obtained clinical and epidemiological data, anthropometric measurements, and a faecal sample to identify enteropathogens at enrolment; one follow-up home visit was made about 60 days later to ascertain vital status, clinical outcome, and interval growth. We enrolled 9439 children with moderate-to-severe diarrhoea and 13,129 control children without diarrhoea. By analysing adjusted population attributable fractions, most attributable cases of moderate-to-severe diarrhoea were due to four pathogens: rotavirus, Cryptosporidium, enterotoxigenic Escherichia coli producing heat-stable toxin (ST-ETEC; with or without co-expression of heat-labile enterotoxin), and Shigella. Other pathogens were important in selected sites (eg, Aeromonas, Vibrio cholerae O1, Campylobacter jejuni). Odds of dying during follow-up were 8·5-fold higher in patients with moderate-to-severe diarrhoea than in controls (odd ratio 8·5, 95% CI 5·8-12·5, p<0·0001); most deaths (167 [87·9%]) occurred during the first 2 years of life. Pathogens associated with increased risk of case death were ST-ETEC (hazard ratio [HR] 1·9; 0·99-3·5) and typical enteropathogenic E coli (HR 2·6; 1·6-4·1) in infants aged 0-11 months, and Cryptosporidium (HR 2·3; 1·3-4·3) in toddlers aged 12-23 months. Interventions targeting five pathogens (rotavirus, Shigella, ST-ETEC, Cryptosporidium, typical enteropathogenic E coli) can substantially reduce the burden of moderate-to-severe diarrhoea. New methods and accelerated implementation of existing interventions (rotavirus vaccine and zinc) are needed to prevent disease and improve outcomes. The Bill & Melinda Gates Foundation. Copyright © 2013 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                BMJ Glob Health
                BMJ Glob Health
                bmjgh
                bmjgh
                BMJ Global Health
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2059-7908
                2022
                5 September 2022
                : 7
                : 9
                : e009548
                Affiliations
                [1 ]departmentNational Center for Immunization and Respiratory Diseases, Influenza Division , CDC , Atlanta, Georgia, USA
                [2 ]departmentDivision of Infectious Diseases and International Health , University of Virginia , Charlottesville, Virginia, USA
                [3 ]World Health Organization , Geneve, Switzerland
                [4 ]World Health Organization Regional Office for Africa , Brazzaville, Congo
                [5 ]World Health Organization Regional Office for the Americas , Washington, DC, USA
                [6 ]World Health Organization Regional Office for Europe , Copenhagen, Denmark
                [7 ]World Health Organization Regional Office for South-East Asia , New Delhi, India
                [8 ]World Health Organization Regional Office for the Western Pacific , Manila, Philippines
                [9 ]University of Ghana Noguchi Memorial Institute for Medical Research , Accra, Ghana
                [10 ]Sefako Makgatho Health Sciences University , Pretoria, South Africa
                [11 ]Institute Oswaldo Cruz , Rio de Janeiro, Brazil
                [12 ]departmentDivison of Viral Diseases , Centers for Disease Control and Prevention , Atlanta, Georgia, USA
                [13 ]Republican Research and Practical Center for Epidemiology and Microbiology , Minsk, Belarus
                [14 ]Christian Medical College Vellore , Vellore, India
                [15 ]Indian Council of Medical Research Regiona lMedical Research Centre , Bhubaneswar, India
                [16 ]Murdoch Children's Research Institute , Parkville, Victoria, Australia
                [17 ]Chinese Center for Disease Control and Prevention , Beijing, China
                [18 ]Institute for Health Metrics and Evaluation , Seattle, Washington, USA
                [19 ]departmentDepartment of Epidemiology , Emory University , Atlanta, Georgia, USA
                [20 ]Qingdao University , Qingdao, Shandong, China
                Author notes
                [Correspondence to ] Dr James A Platts-Mills; jp5t@ 123456virginia.edu
                Author information
                http://orcid.org/0000-0002-4956-0418
                Article
                bmjgh-2022-009548
                10.1136/bmjgh-2022-009548
                9445824
                36660904
                19fdcb9b-993b-4bca-a253-b672660eaf03
                © Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY. Published by BMJ.

                This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See:  https://creativecommons.org/licenses/by/4.0/.

                History
                : 06 May 2022
                : 13 August 2022
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000865, Bill and Melinda Gates Foundation;
                Award ID: OPP1149526, OPP1179069, INV-003418
                Funded by: Gavi, the Vaccine Alliance;
                Categories
                Original Research
                1506
                Custom metadata
                unlocked

                public health,epidemiology,infections, diseases, disorders, injuries,pcr,child health

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content17

                Cited by36

                Most referenced authors5,430