38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Behavioural Effects of the Commonly Used Fish Anaesthetic Tricaine Methanesulfonate (MS-222) on Zebrafish ( Danio rerio) and Its Relevance for the Acetic Acid Pain Test

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The pros and cons of using anaesthesia when handling fish in connection with experiments are debated. A widely adopted practice is to wait thirty minutes after anaesthesia before behavioural observations are initiated, but information about immediate effects of a treatment is then lost. This is pertinent for responses to acute stressors, such as acid injection in the acetic acid pain test. However, omission of anaesthetics in order to obtain data on immediate responses will compromise the welfare of fish and contribute to experimental noise due to stress. We therefore tested the effect of tricaine methanesulfonate on the behaviour of zebrafish. We predicted that tricaine (MS 222) would decrease swimming velocity and that the control fish would show an increased level of anxiety- and stress-related behaviours compared to the tricaine group. Following acclimatization to the test tank, baseline behaviour was recorded before immersion in either tricaine (168 mg l −1, treatment group, N = 8) or tank water (control group, N = 7). Latencies to lose equilibrium and to lose response to touch were registered. The fish was then returned to the test tank, and the latency to regain equilibrium was registered in anaesthetized fish. When equilibrium was regained, and at five, thirty and sixty minutes after the fish had been returned to the test tank, behaviour was recorded. The tricaine fish showed the following responses (mean ± sd): latency to lose equilibrium 22.6 s±3.9; latency to lose response to touch 101.9 s±26.8; latency to regain equilibrium 92.0 s±54.4. Contrary to our predictions, neither treatment caused a change in any of the behaviours registered. This indicates that tricaine has no effect on several commonly used behavioural parameters, and that it may be unnecessary to postpone behavioural observations to 30 min after anaesthesia.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish.

          The zebrafish (Danio rerio) is emerging as a promising model organism for experimental studies of stress and anxiety. Here we further validate zebrafish models of stress by analyzing how environmental and pharmacological manipulations affect their behavioral and physiological phenotypes. Experimental manipulations included exposure to alarm pheromone, chronic exposure to fluoxetine, acute exposure to caffeine, as well as acute and chronic exposure to ethanol. Acute (but not chronic) alarm pheromone and acute caffeine produced robust anxiogenic effects, including reduced exploration, increased erratic movements and freezing behavior in zebrafish tested in the novel tank diving test. In contrast, ethanol and fluoxetine had robust anxiolytic effects, including increased exploration and reduced erratic movements. The behavior of several zebrafish strains was also quantified to ascertain differences in their behavioral profiles, revealing high-anxiety (leopard, albino) and low-anxiety (wild type) strains. We also used LocoScan (CleverSys Inc.) video-tracking tool to quantify anxiety-related behaviors in zebrafish, and dissect anxiety-related phenotypes from locomotor activity. Finally, we developed a simple and effective method of measuring zebrafish physiological stress responses (based on a human salivary cortisol assay), and showed that alterations in whole-body cortisol levels in zebrafish parallel behavioral indices of anxiety. Collectively, our results confirm zebrafish as a valid, reliable, and high-throughput model of stress and affective disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond.

            Zebrafish (Danio rerio) are rapidly gaining popularity in translational neuroscience and behavioral research. Physiological similarity to mammals, ease of genetic manipulations, sensitivity to pharmacological and genetic factors, robust behavior, low cost, and potential for high-throughput screening contribute to the growing utility of zebrafish models in this field. Understanding zebrafish behavioral phenotypes provides important insights into neural pathways, physiological biomarkers, and genetic underpinnings of normal and pathological brain function. Novel zebrafish paradigms continue to appear with an encouraging pace, thus necessitating a consistent terminology and improved understanding of the behavioral repertoire. What can zebrafish 'do', and how does their altered brain function translate into behavioral actions? To help address these questions, we have developed a detailed catalog of zebrafish behaviors (Zebrafish Behavior Catalog, ZBC) that covers both larval and adult models. Representing a beginning of creating a more comprehensive ethogram of zebrafish behavior, this effort will improve interpretation of published findings, foster cross-species behavioral modeling, and encourage new groups to apply zebrafish neurobehavioral paradigms in their research. In addition, this glossary creates a framework for developing a zebrafish neurobehavioral ontology, ultimately to become part of a unified animal neurobehavioral ontology, which collectively will contribute to better integration of biological data within and across species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Measuring anxiety in zebrafish: a critical review.

              Zebrafish are increasingly being used in behavioral neuroscience, neuropsychopharmacology and neurotoxicology. Recently, behavioral screens used to model anxiety in rodents were adapted to this species, and novel models which tap on zebrafish behavioral ecology have emerged. However, model building is an arduous task in experimental psychopathology, and a continuous effort to assess the validity of these measurements is being chased among some researchers. To consider a model as valid, it must possess face, predictive and/or construct validity. In this article, we first review some notions of validity, arguing that, at its limit, face and predictive validity reduce to construct validity. Then we review some procedures which have been used to study anxiety, fear or related processes in zebrafish, using the validity framework. We conclude that, although the predictive validity of some of these models is increasingly being met, there is still a long way in reaching the desired level of construct validity. The refinement of models is an ongoing activity, and behavioral validation and parametric research ought to advance that objective. Copyright (c) 2010 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                21 March 2014
                : 9
                : 3
                : e92116
                Affiliations
                [1 ]Department of Food Safety and Infection Biology, NMBU School of Veterinary Science, Oslo, Norway
                [2 ]Animal Welfare Research Group, Department of Production Animal Clinical Sciences, NMBU School of Veterinary Science, Oslo, Norway
                University of Wurzburg, Germany
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JN. Performed the experiments: JN FMT AMJ. Analyzed the data: JN. Contributed reagents/materials/analysis tools: AMJ TEH. Wrote the paper: JN FMT AMJ TEH.

                Article
                PONE-D-13-53707
                10.1371/journal.pone.0092116
                3962382
                24658262
                19eec046-6c67-49d0-92d9-ecb242d1ecfa
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 19 December 2013
                : 17 February 2014
                Page count
                Pages: 6
                Funding
                This study was funded by the Norwegian School of Veterinary Science. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Agriculture
                Animal Management
                Animal Welfare
                Neuroscience
                Cognitive Neuroscience
                Motor Reactions
                Organisms
                Animals
                Vertebrates
                Fishes
                Osteichthyes
                Zebrafish
                Veterinary Science
                Veterinary Pharmacology
                Zoology
                Animal Behavior
                Medicine and Health Sciences
                Pain Management
                Pain
                Research and Analysis Methods
                Model Organisms
                Animal Models

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content249

                Cited by20

                Most referenced authors179