12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Treatment with a Non-toxic, Self-replicating Anti-prion Delays or Prevents Prion Disease In vivo

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          SUMMARY

          Transmissible Spongiform Encephalopathies (TSEs) are fatal neurological disorders caused by prions, which are composed of a misfolded protein (PrP Sc) that self-propagates in the brain of infected individuals by converting the normal prion protein (PrP C) into the pathological isoform. Here, we report a novel experimental strategy for preventing prion disease based on producing a self-replicating, but innocuous PrP Sc-like form, termed anti-prion, which can compete with the replication of pathogenic prions. Our results show that a prophylactic inoculation of prion-infected animals with an anti-prion delays the onset of the disease and in some animals completely prevents the development of clinical symptoms and brain damage. The data indicate that a single injection of the anti-prion eliminated ~99% of the infectivity associated to pathogenic prions. Furthermore, this treatment caused significant changes in the profile of regional PrP Sc deposition in the brains of animals that were treated, but still succumbed to the disease. Our findings provide new insights for a mechanistic understanding of prion replication and support the concept that prion replication can be separated from toxicity, providing a novel target for therapeutic intervention.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Sustained translational repression by eIF2α-P mediates prion neurodegeneration.

          The mechanisms leading to neuronal death in neurodegenerative disease are poorly understood. Many of these disorders, including Alzheimer's, Parkinson's and prion diseases, are associated with the accumulation of misfolded disease-specific proteins. The unfolded protein response is a protective cellular mechanism triggered by rising levels of misfolded proteins. One arm of this pathway results in the transient shutdown of protein translation, through phosphorylation of the α-subunit of eukaryotic translation initiation factor, eIF2. Activation of the unfolded protein response and/or increased eIF2α-P levels are seen in patients with Alzheimer's, Parkinson's and prion diseases, but how this links to neurodegeneration is unknown. Here we show that accumulation of prion protein during prion replication causes persistent translational repression of global protein synthesis by eIF2α-P, associated with synaptic failure and neuronal loss in prion-diseased mice. Further, we show that promoting translational recovery in hippocampi of prion-infected mice is neuroprotective. Overexpression of GADD34, a specific eIF2α-P phosphatase, as well as reduction of levels of prion protein by lentivirally mediated RNA interference, reduced eIF2α-P levels. As a result, both approaches restored vital translation rates during prion disease, rescuing synaptic deficits and neuronal loss, thereby significantly increasing survival. In contrast, salubrinal, an inhibitor of eIF2α-P dephosphorylation, increased eIF2α-P levels, exacerbating neurotoxicity and significantly reducing survival in prion-diseased mice. Given the prevalence of protein misfolding and activation of the unfolded protein response in several neurodegenerative diseases, our results suggest that manipulation of common pathways such as translational control, rather than disease-specific approaches, may lead to new therapies preventing synaptic failure and neuronal loss across the spectrum of these disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Generating a prion with bacterially expressed recombinant prion protein.

            The prion hypothesis posits that a misfolded form of prion protein (PrP) is responsible for the infectivity of prion disease. Using recombinant murine PrP purified from Escherichia coli, we created a recombinant prion with the attributes of the pathogenic PrP isoform: aggregated, protease-resistant, and self-perpetuating. After intracerebral injection of the recombinant prion, wild-type mice developed neurological signs in approximately 130 days and reached the terminal stage of disease in approximately 150 days. Characterization of diseased mice revealed classic neuropathology of prion disease, the presence of protease-resistant PrP, and the capability of serially transmitting the disease; these findings confirmed that the mice succumbed to prion disease. Thus, as postulated by the prion hypothesis, the infectivity in mammalian prion disease results from an altered conformation of PrP.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice.

              During prion disease, an increase in misfolded prion protein (PrP) generated by prion replication leads to sustained overactivation of the branch of the unfolded protein response (UPR) that controls the initiation of protein synthesis. This results in persistent repression of translation, resulting in the loss of critical proteins that leads to synaptic failure and neuronal death. We have previously reported that localized genetic manipulation of this pathway rescues shutdown of translation and prevents neurodegeneration in a mouse model of prion disease, suggesting that pharmacological inhibition of this pathway might be of therapeutic benefit. We show that oral treatment with a specific inhibitor of the kinase PERK (protein kinase RNA-like endoplasmic reticulum kinase), a key mediator of this UPR pathway, prevented UPR-mediated translational repression and abrogated development of clinical prion disease in mice, with neuroprotection observed throughout the mouse brain. This was the case for animals treated both at the preclinical stage and also later in disease when behavioral signs had emerged. Critically, the compound acts downstream and independently of the primary pathogenic process of prion replication and is effective despite continuing accumulation of misfolded PrP. These data suggest that PERK, and other members of this pathway, may be new therapeutic targets for developing drugs against prion disease or other neurodegenerative diseases where the UPR has been implicated.
                Bookmark

                Author and article information

                Journal
                9607835
                20545
                Mol Psychiatry
                Mol. Psychiatry
                Molecular psychiatry
                1359-4184
                1476-5578
                23 February 2017
                20 June 2017
                21 December 2017
                : 10.1038/mp.2017.84
                Affiliations
                [1 ]Mitchell Center for Alzheimer’s disease and related Brain Disorders, Department of Neurology, University of Texas Health Science Center, Houston, Texas 77030
                [2 ]Facultad de Medicina, Universidad de Los Andes, Chile
                Author notes
                [#]

                Present address: Istituto Neurologico Carlo Besta, Milan (Italy)

                Article
                NIHMS853469
                10.1038/mp.2017.84
                5738294
                28630454
                19dfb210-0d5b-4e7a-a040-5c42d314bf7c

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article