29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      In vivo spectroscopy and NMR metabolite fingerprinting approaches to connect the dynamics of photosynthetic and metabolic phenotypes in resurrection plant Haberlea rhodopensis during desiccation and recovery

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The resurrection plant Haberlea rhodopensis was used to study dynamics of drought response of photosynthetic machinery parallel with changes in primary metabolism. A relation between leaf water content and photosynthetic performance was established, enabling us to perform a non-destructive evaluation of the plant water status during stress. Spectroscopic analysis of photosynthesis indicated that, at variance with linear electron flow (LEF) involving photosystem (PS) I and II, cyclic electron flow around PSI remains active till almost full dry state at the expense of the LEF, due to the changed protein organization of photosynthetic apparatus. We suggest that, this activity could have a photoprotective role and prevent a complete drop in adenosine triphosphate (ATP), in the absence of LEF, to fuel specific energy-dependent processes necessary for the survival of the plant, during the late states of desiccation. The NMR fingerprint shows the significant metabolic changes in several pathways. Due to the declining of LEF accompanied by biosynthetic reactions during desiccation, a reduction of the ATP pool during drought was observed, which was fully and quickly recovered after plants rehydration. We found a decline of valine accompanied by lipid degradation during stress, likely to provide alternative carbon sources for sucrose accumulation at late stages of desiccation. This accumulation, as well as the increased levels of glycerophosphodiesters during drought stress could provide osmoprotection to the cells.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: not found
          • Article: not found

          Roles of glycine betaine and proline in improving plant abiotic stress resistance

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants.

            Experimental studies on CO2 assimilation of mesophytic C3 plants in relation to relative water content (RWC) are discussed. Decreasing RWC slows the actual rate of photosynthetic CO2 assimilation (A) and decreases the potential rate (Apot). Generally, as RWC falls from c. 100 to c. 75%, the stomatal conductance (gs) decreases, and with it A. However, there are two general types of relation of Apot to RWC, which are called Type 1 and Type 2. Type 1 has two main phases. As RWC decreases from 100 to c. 75%, Apot is unaffected, but decreasing stomatal conductance (gs) results in smaller A, and lower CO2 concentration inside the leaf (Ci) and in the chloroplast (Cc), the latter falling possibly to the compensation point. Down-regulation of electron transport occurs by energy quenching mechanisms, and changes in carbohydrate and nitrogen metabolism are considered acclimatory, caused by low Ci and reversible by elevated CO2. Below 75% RWC, there is metabolic inhibition of Apot, inhibition of A then being partly (but progressively less) reversible by elevated CO2; gs regulates A progressively less, and Ci and CO2 compensation point, Gamma rise. It is suggested that this is the true stress phase, where the decrease in Apot is caused by decreased ATP synthesis and a consequent decreased synthesis of RuBP. In the Type 2 response, Apot decreases progressively at RWC 100 to 75%, with A being progressively less restored to the unstressed value by elevated CO2. Decreased gs leads to a lower Ci and Cc but they probably do not reach compensation point: gs becomes progressively less important and metabolic limitations more important as RWC falls. The primary effect of low RWC on Apot is most probably caused by limited RuBP synthesis, as a result of decreased ATP synthesis, either through inhibition of Coupling Factor activity or amount due to increased ion concentration. Carbohydrate synthesis and accumulation decrease. Type 2 response is considered equivalent to Type 1 at RWC below c. 75%, with Apot inhibited by limited ATP and RuBP synthesis, respiratory metabolism dominates and Ci and Gamma rise. The importance of inhibited ATP synthesis as a primary cause of decreasing Apot is discussed. Factors determining the Type 1 and Type 2 responses are unknown. Electron transport is maintained (but down-regulated) in Types 1 and 2 over a wide range of RWC, and a large reduced/oxidized adenylate ratio results. Metabolic imbalance results in amino acid accumulation and decreased and altered protein synthesis. These conditions profoundly affect cell functions and ultimately cause cell death. Type 1 and 2 responses may reflect differences in gs and in sensitivity of metabolism to decreasing RWC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Response of plants to water stress

              Water stress adversely impacts many aspects of the physiology of plants, especially photosynthetic capacity. If the stress is prolonged, plant growth, and productivity are severely diminished. Plants have evolved complex physiological and biochemical adaptations to adjust and adapt to a variety of environmental stresses. The molecular and physiological mechanisms associated with water-stress tolerance and water-use efficiency have been extensively studied. The systems that regulate plant adaptation to water stress through a sophisticated regulatory network are the subject of the current review. Molecular mechanisms that plants use to increase stress tolerance, maintain appropriate hormone homeostasis and responses and prevent excess light damage, are also discussed. An understanding of how these systems are regulated and ameliorate the impact of water stress on plant productivity will provide the information needed to improve plant stress tolerance using biotechnology, while maintaining the yield and quality of crops.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                21 July 2015
                2015
                : 6
                : 564
                Affiliations
                [1] 1Abiotic Stress Group, Agrobioinstitute, Agricultural Academy Sofia, Bulgaria
                [2] 2Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA, CNRS, Université Grenoble Alpes INRA, Grenoble, France
                [3] 3Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences Sofia, Bulgaria
                [4] 4Laboratoire de Biologie à Grande Echelle, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA, Université Grenoble Alpes INSERM, Grenoble, France
                [5] 5Department of Biophysics and Radiobiology, Faculty of Biology, Sofia University Sofia, Bulgaria
                [6] 6Laboratory “Nuclear Magnetic Resonance", Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences Sofia, Bulgaria
                [7] 7Department of Biochemistry, Faculty of Biology, Sofia University Sofia, Bulgaria
                Author notes

                Edited by: Richard Sayre, New Mexico Consortium at Los Alamos National Labs, USA

                Reviewed by: Nabil I. Elsheery, Tanta University, Egypt; Helmut Kirchhoff, Washington State University, USA

                *Correspondence: Dimitar Djilianov, Abiotic Stress Group, Agrobioinstitute, Agricultural Academy, 8 Dragan Tsankov Boulevard, 1164 Sofia, Bulgaria, d_djilianov@ 123456abi.bg ; Norbert Rolland, Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA, CNRS, Université Grenoble Alpes, INRA, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France, norbert.rolland@ 123456cea.fr

                This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2015.00564
                4508511
                26257765
                19d05797-2739-4fb2-b9a0-bbcf63ecc048
                Copyright © 2015 Mladenov, Finazzi, Bligny, Moyankova, Zasheva, Boisson, Brugière, Krasteva, Alipieva, Simova, Tchorbadjieva, Goltsev, Ferro, Rolland and Djilianov.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 17 April 2015
                : 09 July 2015
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 63, Pages: 14, Words: 0
                Funding
                Funded by: Operational programme Human resources Development
                Award ID: COST-STSM-FA0603-5623
                Funded by: European Social Fund of the European Union
                Award ID: BG051PO001
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                resurrection plant,drought stress,photosynthesis,metabolism,phenotype,haberlea rhodopensis

                Comments

                Comment on this article