1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evolution of pathogenicity in obligate fungal pathogens and allied genera

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Obligate fungal pathogens (ascomycetes and basidiomycetes) and oomycetes are known to cause diseases in cereal crop plants. They feed on living cells and most of them have learned to bypass the host immune machinery. This paper discusses some of the factors that are associated with pathogenicity drawing examples from ascomycetes, basidiomycetes and oomycetes, with respect to their manifestation in crop plants. The comparisons have revealed a striking similarity in the three groups suggesting convergent pathways that have arisen from three lineages independently leading to an obligate lifestyle. This review has been written with the intent, that new information on adaptation strategies of biotrophs, modifications in pathogenicity strategies and population dynamics will improve current strategies for breeding with stable resistance.

          Related collections

          Most cited references108

          • Record: found
          • Abstract: found
          • Article: not found

          The plant immune system.

          Many plant-associated microbes are pathogens that impair plant growth and reproduction. Plants respond to infection using a two-branched innate immune system. The first branch recognizes and responds to molecules common to many classes of microbes, including non-pathogens. The second responds to pathogen virulence factors, either directly or through their effects on host targets. These plant immune systems, and the pathogen molecules to which they respond, provide extraordinary insights into molecular recognition, cell biology and evolution across biological kingdoms. A detailed understanding of plant immune function will underpin crop improvement for food, fibre and biofuels production.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics

            The Carbohydrate-Active Enzyme (CAZy) database is a knowledge-based resource specialized in the enzymes that build and breakdown complex carbohydrates and glycoconjugates. As of September 2008, the database describes the present knowledge on 113 glycoside hydrolase, 91 glycosyltransferase, 19 polysaccharide lyase, 15 carbohydrate esterase and 52 carbohydrate-binding module families. These families are created based on experimentally characterized proteins and are populated by sequences from public databases with significant similarity. Protein biochemical information is continuously curated based on the available literature and structural information. Over 6400 proteins have assigned EC numbers and 700 proteins have a PDB structure. The classification (i) reflects the structural features of these enzymes better than their sole substrate specificity, (ii) helps to reveal the evolutionary relationships between these enzymes and (iii) provides a convenient framework to understand mechanistic properties. This resource has been available for over 10 years to the scientific community, contributing to information dissemination and providing a transversal nomenclature to glycobiologists. More recently, this resource has been used to improve the quality of functional predictions of a number genome projects by providing expert annotation. The CAZy resource resides at URL: http://www.cazy.org/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Black Queen Hypothesis: Evolution of Dependencies through Adaptive Gene Loss

              ABSTRACT Reductive genomic evolution, driven by genetic drift, is common in endosymbiotic bacteria. Genome reduction is less common in free-living organisms, but it has occurred in the numerically dominant open-ocean bacterioplankton Prochlorococcus and “Candidatus Pelagibacter,” and in these cases the reduction appears to be driven by natural selection rather than drift. Gene loss in free-living organisms may leave them dependent on cooccurring microbes for lost metabolic functions. We present the Black Queen Hypothesis (BQH), a novel theory of reductive evolution that explains how selection leads to such dependencies; its name refers to the queen of spades in the game Hearts, where the usual strategy is to avoid taking this card. Gene loss can provide a selective advantage by conserving an organism’s limiting resources, provided the gene’s function is dispensable. Many vital genetic functions are leaky, thereby unavoidably producing public goods that are available to the entire community. Such leaky functions are thus dispensable for individuals, provided they are not lost entirely from the community. The BQH predicts that the loss of a costly, leaky function is selectively favored at the individual level and will proceed until the production of public goods is just sufficient to support the equilibrium community; at that point, the benefit of any further loss would be offset by the cost. Evolution in accordance with the BQH thus generates “beneficiaries” of reduced genomic content that are dependent on leaky “helpers,” and it may explain the observed nonuniversality of prototrophy, stress resistance, and other cellular functions in the microbial world.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                peerj
                PeerJ
                PeerJ Inc. (San Diego, USA )
                2167-8359
                25 August 2022
                2022
                : 10
                : e13794
                Affiliations
                [1 ]Infectious Diseases Program, California Department of Public Health , Richmond, California, United States of America
                [2 ]Riverside School of Medicine, University of California, Riverside , Riverside, CA, United States of America
                [3 ]Hangzhou Academy of Agricultural Sciences , Hangzhou, P.R. China
                [4 ]Guangxi Academy of Specialty Crops , Guilin, Guangxi, P.R. China
                [5 ]Zhejiang Academy of Agricultural Sciences , Hangzhou, P.R. China
                [6 ]Hangzhou Academy of Agricultural Sciences , Hangzhou, P.R. China
                Article
                13794
                10.7717/peerj.13794
                9420410
                36042858
                1993a85e-52c7-45a1-9431-2ecdf90d46ec
                ©2022 RoyChowdhury et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 6 August 2021
                : 6 July 2022
                Funding
                Funded by: Science and Technology Innovation and Demonstration Promotion Fund of Hangzhou Academy of Agricultural Sciences
                Award ID: 2019HNCT-07
                Funded by: Agricultural and Social Development Project of Hangzhou
                Award ID: 20201203B104
                This work was supported by the Science and Technology Innovation and Demonstration Promotion Fund of Hangzhou Academy of Agricultural Sciences, No. 2019HNCT-07, Agricultural and Social Development Project of Hangzhou, No. 20201203B104. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Agricultural Science
                Evolutionary Studies
                Genetics
                Mycology
                Plant Science

                obligate pathogens,parasitism,virulance,pathogenicity,biotrophy,evolution

                Comments

                Comment on this article