2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The edge-on protoplanetary disk HH 48 NE : I. Modeling the geometry and stellar parameters

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Context. Observations of edge-on disks are an important tool for constraining general protoplanetary disk properties that cannot be determined in any other way. However, most radiative transfer models cannot simultaneously reproduce the spectral energy distributions (SEDs) and resolved scattered light and submillimeter observations of these systems because the geometry and dust properties are different at different wavelengths.

          Aims. We simultaneously constrain the geometry of the edge-on protoplanetary disk HH 48 NE and the characteristics of the host star. HH 48 NE is part of the JWST early-release science program Ice Age. This work serves as a stepping stone toward a better understanding of the physical structure of the disk and of the icy chemistry in this particular source. This type of modeling lays the groundwork for studying other edge-on sources that are to be observed with the JWST.

          Methods. We fit a parameterized dust model to HH 48 NE by coupling the radiative transfer code RADMC-3D and a Markov chain Monte Carlo framework. The dust structure was fit independently to a compiled SED, a scattered light image at 0.8 µm, and an ALMA dust continuum observation at 890 µm.

          Results. We find that 90% of the dust mass in HH 48 NE is settled to the disk midplane. This is less than in average disks. The atmospheric layers of the disk also exclusively contain large grains (0.3–10 µm). The exclusion of small grains in the upper atmosphere likely has important consequences for the chemistry because high-energy photons can penetrate very deeply. The addition of a relatively large cavity (~50 au in radius) is necessary to explain the strong mid-infrared emission and to fit the scattered light and continuum observations simultaneously.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: not found
          • Article: not found

          Matplotlib: A 2D Graphics Environment

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Astropy: A community Python package for astronomy

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              emcee: The MCMC Hammer

                Bookmark

                Author and article information

                Journal
                Astronomy & Astrophysics
                A&A
                EDP Sciences
                0004-6361
                1432-0746
                September 2023
                August 28 2023
                September 2023
                : 677
                : A17
                Article
                10.1051/0004-6361/202346052
                198d1b78-5328-4c44-aee4-2288c9db5204
                © 2023

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article