31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution

      1 , 1 , 2 , 1
      Proceedings of the Royal Society B: Biological Sciences
      The Royal Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The processes that drive the evolution of snake venom variability, particularly the role of diet, have been a topic of intense recent research interest. Here, we test whether extensive variation in venom composition in the medically important viper genus Echis is associated with shifts in diet. Examination of stomach and hindgut contents revealed extreme variation between the major clades of Echis in the proportion of arthropod prey consumed. The toxicity (median lethal dose, LD(50)) of representative Echis venoms to a natural scorpion prey species was found to be strongly associated with the degree of arthropod feeding. Mapping the results onto a novel Echis phylogeny generated from nuclear and mitochondrial sequence data revealed two independent instances of coevolution of venom toxicity and diet. Unlike venom LD(50), the speed with which venoms incapacitated and killed scorpions was not associated with the degree of arthropod feeding. The prey-specific venom toxicity of arthropod-feeding Echis may thus be adaptive primarily by reducing venom expenditure. Overall, our results provide strong evidence that variation in snake venom composition results from adaptive evolution driven by natural selection for different diets, and underscores the need for a multi-faceted, integrative approach to the study of the causes of venom evolution.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Nuclear integrations: challenges for mitochondrial DNA markers.

          The combined use of mitochondrial DNA markers and polymerase chain reaction (PCR) techniques has greatly enhanced evolutionary studies. These techniques have also promoted the discovery of mitochondrial-like sequences in the nuclear genomes of many animals. While the nuclear sequences themselves are interesting, and capable of serving as valuable molecular tools, they can also confound phylogenetic and population genetic studies. Clearly, a better understanding of these phenomena and vigilance towards misleading data are needed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Denmotoxin, a three-finger toxin from the colubrid snake Boiga dendrophila (Mangrove Catsnake) with bird-specific activity.

            Boiga dendrophila (mangrove catsnake) is a colubrid snake that lives in Southeast Asian lowland rainforests and mangrove swamps and that preys primarily on birds. We have isolated, purified, and sequenced a novel toxin from its venom, which we named denmotoxin. It is a monomeric polypeptide of 77 amino acid residues with five disulfide bridges. In organ bath experiments, it displayed potent postsynaptic neuromuscular activity and irreversibly inhibited indirectly stimulated twitches in chick biventer cervicis nerve-muscle preparations. In contrast, it induced much smaller and readily reversible inhibition of electrically induced twitches in mouse hemidiaphragm nerve-muscle preparations. More precisely, the chick muscle alpha(1)betagammadelta-nicotinic acetylcholine receptor was 100-fold more susceptible compared with the mouse receptor. These data indicate that denmotoxin has a bird-specific postsynaptic activity. We chemically synthesized denmotoxin, crystallized it, and solved its crystal structure at 1.9 A by the molecular replacement method. The toxin structure adopts a non-conventional three-finger fold with an additional (fifth) disulfide bond in the first loop and seven additional residues at its N terminus, which is blocked by a pyroglutamic acid residue. This is the first crystal structure of a three-finger toxin from colubrid snake venom and the first fully characterized bird-specific toxin. Denmotoxin illustrates the relationship between toxin specificity and the primary prey type that constitutes the snake's diet.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A nesting of vipers: Phylogeny and historical biogeography of the Viperidae (Squamata: Serpentes).

              Despite their medical interest, the phylogeny of the snake family Viperidae remains inadequately understood. Previous studies have generally focused either on the pitvipers (Crotalinae) or on the Old World vipers (Viperinae), but there has been no comprehensive molecular study of the Viperidae as a whole, leaving the affinities of key taxa unresolved. Here, we infer the phylogenetic relationships among the extant genera of the Viperidae from the sequences of four mitochondrial genes (cytochrome b, NADH subunit 4, 16S and 12S rRNA). The results confirm Azemiops as the sister group of the Crotalinae, whereas Causus is nested within the Viperinae, and thus not a basal viperid or viperine. Relationships among the major clades of Viperinae remain poorly resolved despite increased sequence information compared to previous studies. Bayesian molecular dating in conjunction with dispersal-vicariance analysis suggests an early Tertiary origin in Asia for the crown group Viperidae, and rejects suggestions of a relatively recent, early to mid-Tertiary origin of the Caenophidia.
                Bookmark

                Author and article information

                Journal
                Proceedings of the Royal Society B: Biological Sciences
                Proc. R. Soc. B
                The Royal Society
                0962-8452
                1471-2954
                April 08 2009
                July 07 2009
                April 2009
                July 07 2009
                : 276
                : 1666
                : 2443-2449
                Affiliations
                [1 ]School of Biological Sciences, Environment Centre Wales, Bangor UniversityBangor LL57 2UW, UK
                [2 ]Alistair Reid Venom Research Unit, Liverpool School of Tropical MedicinePembroke Place, Liverpool L3 5QA, UK
                Article
                10.1098/rspb.2009.0048
                2690460
                19364745
                1960831b-e1f9-4efb-9bfe-ea883dd7c56a
                © 2009
                History

                Comments

                Comment on this article