0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Foot-and-mouth disease virus VP1 degrades YTHDF2 through autophagy to regulate IRF3 activity for viral replication

      research-article
      , , , , , , ,
      Autophagy
      Taylor & Francis
      Autophagy, FMDV, IRF3, GTPBP4, YTHDF2, MTOR

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Many viruses, including foot-and-mouth disease virus (FMDV), can promote the degradation of host proteins through macroautophagy/autophagy, thereby promoting viral replication. However, the regulatory mechanism between autophagy and innate immune responses is not fully understood during FMDV infection. Here, we found that the host GTPBP4/NOG1 (GTP binding protein 4) is a negative regulator of innate immune responses. GTPBP4 deficiency promotes the antiviral innate immune response, resulting in the ability of GTPBP4 to promote FMDV replication. Meanwhile, GTPBP4-deficient mice are more resistant to FMDV infection. To antagonize the host’s antiviral immunity, FMDV structural protein VP1 promotes the expression of GTPBP4, and the 209th site of VP1 is responsible for this effect. Mechanically, FMDV VP1 promotes autophagy during virus infection and interacts with and degrades YTHDF2 (YTH N6-methyladenosine RNA binding protein F2) in an AKT-MTOR-dependent autophagy pathway, resulting in an increase in GTPBP4 mRNA and protein levels. Increased GTPBP4 inhibits IRF3 binding to the Ifnb/Ifn-β promoter, suppressing FMDV-induced type I interferon production. In conclusion, our study revealed an underlying mechanism of how VP1 negatively regulates innate immunity through the autophagy pathway, which would contribute to understanding the negative regulation of host innate immune responses and the function of GTPBP4 and YTHDF2 during FMDV infection.

          Abbreviation: 3-MA:3-methyladenine; ACTB: actin beta; ATG: autophagy related; ChIP:chromatin immunoprecipitation; CQ: chloroquine; DAPI:4’,6-diamidino-2-phenylindole; dpi: days post-infection; EV71:enterovirus 71; FMDV: foot-and-mouth disease virus; GTPBP4/NOG1: GTPbinding protein 4; HIF1A: hypoxia inducible factor 1 subunit alpha;hpt:hours post-transfection; IFNB/IFN-β:interferon beta; IRF3: interferon regulatory factor 3; MAP1LC3/LC3:microtubule associated protein 1 light chain 3; MAVS: mitochondriaantiviral signaling protein; MOI: multiplicity of infection; MTOR:mechanistic target of rapamycin kinase; m6A: N(6)-methyladenosine;qPCR:quantitativePCR; SIRT3:sirtuin 3; SQSTM1/p62: sequestosome 1; STING1: stimulator ofinterferon response cGAMP interactor 1; siRNA: small interfering RNA;TBK1: TANK binding kinase 1; TCID 50:50% tissue culture infectious doses; ULK1: unc-51 like autophagyactivating kinase 1; UTR: untranslated region; WT: wild type; YTHDF2:YTH N6-methyladenosine RNA binding protein F2

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          Analyzing real-time PCR data by the comparative C(T) method.

          Two different methods of presenting quantitative gene expression exist: absolute and relative quantification. Absolute quantification calculates the copy number of the gene usually by relating the PCR signal to a standard curve. Relative gene expression presents the data of the gene of interest relative to some calibrator or internal control gene. A widely used method to present relative gene expression is the comparative C(T) method also referred to as the 2 (-DeltaDeltaC(T)) method. This protocol provides an overview of the comparative C(T) method for quantitative gene expression studies. Also presented here are various examples to present quantitative gene expression data using this method.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Autophagy: cellular and molecular mechanisms.

            Autophagy is a self-degradative process that is important for balancing sources of energy at critical times in development and in response to nutrient stress. Autophagy also plays a housekeeping role in removing misfolded or aggregated proteins, clearing damaged organelles, such as mitochondria, endoplasmic reticulum and peroxisomes, as well as eliminating intracellular pathogens. Thus, autophagy is generally thought of as a survival mechanism, although its deregulation has been linked to non-apoptotic cell death. Autophagy can be either non-selective or selective in the removal of specific organelles, ribosomes and protein aggregates, although the mechanisms regulating aspects of selective autophagy are not fully worked out. In addition to elimination of intracellular aggregates and damaged organelles, autophagy promotes cellular senescence and cell surface antigen presentation, protects against genome instability and prevents necrosis, giving it a key role in preventing diseases such as cancer, neurodegeneration, cardiomyopathy, diabetes, liver disease, autoimmune diseases and infections. This review summarizes the most up-to-date findings on how autophagy is executed and regulated at the molecular level and how its disruption can lead to disease. Copyright (c) 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex

              Methylation at the N6 position of adenosine (m6A) is the most abundant RNA modification within protein-coding and long noncoding RNAs in eukaryotes and is a reversible process with important biological functions. YT521-B homology domain family (YTHDF) proteins are the readers of m6A, the binding of which results in the alteration of the translation efficiency and stability of m6A-containing RNAs. However, the mechanism by which YTHDF proteins cause the degradation of m6A-containing RNAs is poorly understood. Here we report that m6A-containing RNAs exhibit accelerated deadenylation that is mediated by the CCR4–NOT deadenylase complex. We further show that YTHDF2 recruits the CCR4–NOT complex through a direct interaction between the YTHDF2 N-terminal region and the SH domain of the CNOT1 subunit, and that this recruitment is essential for the deadenylation of m6A-containing RNAs by CAF1 and CCR4. Therefore, we have uncovered the mechanism of YTHDF2-mediated degradation of m6A-containing RNAs in mammalian cells.
                Bookmark

                Author and article information

                Journal
                Autophagy
                Autophagy
                Autophagy
                Taylor & Francis
                1554-8627
                1554-8635
                22 March 2024
                2024
                22 March 2024
                : 20
                : 7
                : 1597-1615
                Affiliations
                [0001]State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences; , Lanzhou, China
                Author notes
                CONTACT Zixiang Zhu zhuzixiang@ 123456caas.cn
                Haixue Zheng haixuezheng@ 123456163.com State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences; , No. 1, Xujiaping Road, Lanzhou 730046, PR China
                [*]

                These authors contributed equally to this work.

                Article
                2330105
                10.1080/15548627.2024.2330105
                11210904
                38516932
                19408605-e0cc-4262-ab6c-e5bcb11d3d95
                © 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

                History
                Page count
                Figures: 8, References: 93, Pages: 19
                Categories
                Research Article
                Research Paper

                Molecular biology
                autophagy,fmdv,irf3,gtpbp4,ythdf2,mtor
                Molecular biology
                autophagy, fmdv, irf3, gtpbp4, ythdf2, mtor

                Comments

                Comment on this article