239
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The evolution of parasitism in Nematoda

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          SUMMARY

          Nematodes are abundant and diverse, and include many parasitic species. Molecular phylogenetic analyses have shown that parasitism of plants and animals has arisen at least 15 times independently. Extant nematode species also display lifestyles that are proposed to be on the evolutionary trajectory to parasitism. Recent advances have permitted the determination of the genomes and transcriptomes of many nematode species. These new data can be used to further resolve the phylogeny of Nematoda, and identify possible genetic patterns associated with parasitism. Plant-parasitic nematode genomes show evidence of horizontal gene transfer from other members of the rhizosphere, and these genes play important roles in the parasite-host interface. Similar horizontal transfer is not evident in animal parasitic groups. Many nematodes have bacterial symbionts that can be essential for survival. Horizontal transfer from symbionts to the nematode is also common, but its biological importance is unclear. Over 100 nematode species are currently targeted for sequencing, and these data will yield important insights into the biology and evolutionary history of parasitism. It is important that these new technologies are also applied to free-living taxa, so that the pre-parasitic ground state can be inferred, and the novelties associated with parasitism isolated.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Genome sequence of the nematode C. elegans: a platform for investigating biology.

          (1999)
          The 97-megabase genomic sequence of the nematode Caenorhabditis elegans reveals over 19,000 genes. More than 40 percent of the predicted protein products find significant matches in other organisms. There is a variety of repeated sequences, both local and dispersed. The distinctive distribution of some repeats and highly conserved genes provides evidence for a regional organization of the chromosomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes.

            Although common among bacteria, lateral gene transfer-the movement of genes between distantly related organisms-is thought to occur only rarely between bacteria and multicellular eukaryotes. However, the presence of endosymbionts, such as Wolbachia pipientis, within some eukaryotic germlines may facilitate bacterial gene transfers to eukaryotic host genomes. We therefore examined host genomes for evidence of gene transfer events from Wolbachia bacteria to their hosts. We found and confirmed transfers into the genomes of four insect and four nematode species that range from nearly the entire Wolbachia genome (>1 megabase) to short (<500 base pairs) insertions. Potential Wolbachia-to-host transfers were also detected computationally in three additional sequenced insect genomes. We also show that some of these inserted Wolbachia genes are transcribed within eukaryotic cells lacking endosymbionts. Therefore, heritable lateral gene transfer occurs into eukaryotic hosts from their prokaryote symbionts, potentially providing a mechanism for acquisition of new genes and functions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Draft genome of the filarial nematode parasite Brugia malayi.

              Parasitic nematodes that cause elephantiasis and river blindness threaten hundreds of millions of people in the developing world. We have sequenced the approximately 90 megabase (Mb) genome of the human filarial parasite Brugia malayi and predict approximately 11,500 protein coding genes in 71 Mb of robustly assembled sequence. Comparative analysis with the free-living, model nematode Caenorhabditis elegans revealed that, despite these genes having maintained little conservation of local synteny during approximately 350 million years of evolution, they largely remain in linkage on chromosomal units. More than 100 conserved operons were identified. Analysis of the predicted proteome provides evidence for adaptations of B. malayi to niches in its human and vector hosts and insights into the molecular basis of a mutualistic relationship with its Wolbachia endosymbiont. These findings offer a foundation for rational drug design.
                Bookmark

                Author and article information

                Journal
                Parasitology
                Parasitology
                PAR
                Parasitology
                Cambridge University Press (Cambridge, UK )
                0031-1820
                1469-8161
                February 2015
                25 June 2014
                : 142
                : Suppl 1 , The Evolution of Parasite Genomes and the Origins of Parasitism
                : S26-S39
                Affiliations
                [1]Institute of Evolutionary Biology, The University of Edinburgh , Edinburgh EH9 3JT, UK
                Author notes
                [* ]Corresponding author: The Ashworth Laboratories , The King's Buildings, Edinburgh EH9 3JT, UK. E-mail: mark.blaxter@ 123456ed.ac.uk .
                Article
                S0031182014000791 00079
                10.1017/S0031182014000791
                4413787
                24963797
                1931afbe-ae67-47dd-b443-a436409b925a
                © Cambridge University Press 2014

                The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence http://creativecommons.org/licenses/by/3.0/

                History
                : 19 February 2014
                : 16 April 2014
                : 16 April 2014
                Page count
                Figures: 1, Tables: 2, References: 101, Pages: 14
                Categories
                Research Article

                Parasitology
                nematoda,nematodes,parasitism,evolution,genome,symbiont,wolbachia,phylogeny,horizontal gene transfer
                Parasitology
                nematoda, nematodes, parasitism, evolution, genome, symbiont, wolbachia, phylogeny, horizontal gene transfer

                Comments

                Comment on this article